Method and apparatus for controlling an ink-jet print head...

Incremental printing of symbolic information – Ink jet – Controller

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S014000, C347S019000

Reexamination Certificate

active

06231153

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to thermal ink-jet printing, more particularly to free-ink ink-jet pens and, more specifically to a dual function thermal control mechanism for ink-jet print heads.
2. Description of Related Art
The art of ink-jet technology is relatively well developed. Commercial products such as computer printers, graphics plotters, copiers, and facsimile machines employ ink-jet technology for producing hard copy. The basics of this technology are disclosed, for example, in various articles in the Hewlett-Packard Journal, Vol. 36, No. 5 (May 1985), Vol. 39, No. 4 (August 1988), Vol. 39, No. 5 (October 1988), Vol. 43, No. 4 (August 1992), Vol. 43, No. 6 (December 1992) and Vol. 45, No. 1 (February 1994) editions. Ink-jet devices are also described by W. J. Lloyd and H. T. Taub in Output Hardcopy Devices, chapter 13 (Ed. R. C. Durbeck and S. Sherr, Academic Press, San Diego, 1988).
In the art, it is known to provide a print head having an orifice plate that operates in combination with subjacent heating elements, such as resistors. Thermal excitation of ink is used to eject droplets through tiny nozzles in the orifice plate onto an adjacent print medium. The combination of a nozzle with an orifice, an ink manifold, and a firing resistor is sometimes referred to simply as a “drop generator” or an “ejector.” Generally, the print head is scanned across the print medium and dot matrix manipulation is performed to create a graphics or photographic images or alphanumeric characters from patterns of individual ink droplets at particular locations that can be described as a linear matrix array of picture elements (“pixels”).
The ink-jet print head mechanism itself may have a self-contained reservoir (referred to in the art as “on-axis”) for storing ink and providing appropriate amounts of ink to the print head during a printing cycle. These self-contained, disposable mechanisms are often referred to as “pint cartridges.”
If a refillable type “pen” rather than a print cartridge is employed in the hard copy apparatus, ink is generally supplied from a remote, refillable or replaceable, offboard (“off-axis”)ink reservoir which is coupled by an ink conduit to a relatively permanent pen body and print head mechanism. Alternatively, such a “free-ink” ink-jet printing mechanisms have also been designed to have a print head mechanism and a detachable, on-board, reservoir that can be refilled or replaced as needed. The ink-jet pen and particularly the print head element is thus expected to have a longer life than a disposable cartridge.
Early in the development of thermal ink-jet printing it was discovered that the preheating of ink in the vicinity of the ink drop firing resistors has many advantages, as explained for example in U.S. Pat. No. 4,490,728 (Vaught et al., 1984, assigned to the common assignee of the present invention and incorporated herein by reference). The electrical pulse to each resistor comprises a “precursor pulse” and a “nucleation pulse.” The precursor pulse preheats the ink in the vicinity of the resistor to a temperature below the boiling temperature of the ink so as to preheat the ink while avoiding vapor bubble nucleation within the local ink supply. Subsequently occurring nucleation pulses very quickly heat the resistor to near the superheat limit of the ink, causing an ink droplet to be ejected through the nozzle. Thus, temperature sensing, or monitoring, of the print head mechanism also became an important operational parameter.
Various means have been invented to accomplish a preheating function in thermal ink-jet print heads. See e.g., U.S. Pat. Nos. 4,704,620; 4,899,180; 4,910,528 (Firl et al., assigned to the common assignee of the present invention); 5,107,276; and, also assigned to the common assignee of the present invention: 5,109,234; 5,144,336; 5,168,284; 5,235,346; 5,418,558 (Firl et al.); 5,428,376; and 5,475,405. Each of these techniques has its advantages and disadvantages.
It has been found, however, that there is a need for a mechanism allowing a preheating of the print head in a solid state fabrication ink-jet print head such that the prior art's complicated and chip area consuming logic are no longer required to accomplish the preheating function.
SUMMARY OF THE INVENTION
In its basic aspects, the present invention provides a thermal ink-jet print head, including: a plurality of drop generators; combinatorial print head driver logic, connected to each of the drop generators, for receiving printing data and driving selected drop generators to fire ink drops based upon the printing data; and a mechanism for thermally controlling temperature of the print head, mounted in relation to both the drop generators and the combinatorial print head driver logic such that the a mechanism for thermally controlling temperature is selectively a passive thermal sensor of average print head temperature and an active heater of the print head when the print head temperature falls below a predetermined minimum operating temperature limit.
The present invention also provides for a thermal ink-jet pen, including: a housing, having an ink accumulation chamber; a print head mounted on the housing; circuitry for connecting the print head to a source of data and power; an ink inlet port for coupling the accumulation chamber to a supply of ink; a regulator coupled to the ink inlet port for controlling both flow of ink into the ink accumulation chamber and gauge pressure at the print head; the print head including a plurality of drop generators, combinatorial driver logic, connected to each of the drop generators, for receiving printing data and selectively driving drop generators based upon the printing data, and mechanisms for thermally controlling temperature of the print head, mounted adjacent both the drop generators and the combinatorial driver logic, wherein the mechanisms for thermally controlling temperature is selectively a passive thermal sensor of average print head temperature and an active heater of the print head when the print head temperature falls below minimum temperature limit.
The present invention also provides for a method for controlling temperature of a thermal ink-jet print head, the method including the steps of providing a temperature controller device including a resistor element substantially encompassing the print head; using the resistor element as a passive device, measuring temperature of the print head and transmitting a signal indicative of average print head temperature; when the signal indicative of average print head temperature falls below a predetermined minimum temperature for operation of the print head, using the temperature controller device to activate the resistor element as an active device to heat the print head to a predetermined operational temperature.
The present invention also provides a thermal ink-jet print head, including: a plurality of drop generators; combinatorial print head driver logic, connected to each of the drop generators, for receiving printing data and driving selected drop generators to fire ink drops based upon the printing data; and a thermally control temperature of the print head, including an integrally mounted print head resistor, mounted in relation to both the drop generators and the combinatorial print head driver logic such that the print head resistor is selectively a passive thermal sensor of average print head temperature and an active heater of the print head when the print head temperature falls below a predetermined minimum operating temperature limit and a reference resistor connected to the print head resistor.
It is an advantage of the present invention that it eliminates the necessity of complex preheating algorithms for ink-jet pen drop generators.
It is another advantage of the present invention that it provides for a simple solid state fabrication of an ink-jet pen print head mechanism.
It is a further advantage of the present invention that it provides dual functionality to a print head sensing elemen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for controlling an ink-jet print head... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for controlling an ink-jet print head..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for controlling an ink-jet print head... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2451140

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.