Method and apparatus for controllably generating sparks in...

Electric lamp and discharge devices: systems – Periodic switch in the supply circuit – Silicon controlled rectifier ignition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S307000, C315S2090CD, C123S596000, C123S601000, C123S608000

Reexamination Certificate

active

06353293

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to spark generation and more particularly to a method and apparatus for controllably generating and shaping sparks in an ignition system or the like.
BACKGROUND OF THE INVENTION
Solid-state ignition systems are known in the art. U.S. Pat. Nos. 5,065,073 and 5,245,252, the disclosures of which are hereby incorporated by reference, teach, inter alia, that improved control over the performance of an ignition system can be achieved by incorporating a solid-state switch into an ignition output circuit. As taught by these patents, the ability of a solid-state switch to be triggered at a precise time allows an ignition system incorporating such a switch to achieve controlled spark rates. It also allows such a system to generate time-varying spark sequences. In addition, as explained in the above referenced patents, since a solid-state switch can be controlled independently of the voltage level of the ignition system's tank capacitor, an ignition system incorporating a solid-state switch can be used to deliver various amounts of energy by triggering the solid-state switch when a voltage associated with a desired energy transfer appears across the tank capacitor. This later effect cannot be achieved in older circuits using spark-gap switches since such switches fire only at a single voltage which is preset during manufacture of the spark-gap switch and will, thus, fire as soon as the voltage across the tank capacitor reaches the preset triggering level.
The '073 and '252 Patents also teach the desirability of waveshaping the current delivered into an igniter plug for a sparking event. For example, these patents teach that it is desirable to deliver a current to an igniter plug which initially increases at a low rate while ionizing the plug's gap and thereafter increases at a higher rate to sustain a spark across the ionized gap. Among other things, controlling the rise time of the current in this manner maximizes the life of the solid-state switch and the igniter plug by providing such components an opportunity to pass through their transition states before being taxed with a full, high energy pulse.
As mentioned above, prior art circuits such as those disclosed in the '073 and '252 Patents have achieved some degree of control over spark generation. However, prior art circuits such as these, while achieving many beneficial effects, have been somewhat constrained in their ability to control spark generation by certain physical limitations. For example, it is well known that the energy stored in an ignition circuit employing a tank capacitor is described by the formula:
Energy=½*Capacitance*(Voltage)
2
Thus, the energy delivered by such a circuit can be varied by changing either the charging voltage placed across the tank capacitor or the capacitance of the tank capacitor itself. There are, however, several practical limitations involved in varying these characteristics. For example, lowering the voltage levels used in the circuit requires a disproportionately large increase in the physical size of the capacitor used in the circuit to achieve similar energy levels. On the other hand, the available selection of capacitors, insulation materials, and solid-state switch components becomes limited at higher voltage levels.
The capacitance of prior art spark generating circuits is generally fixed when those circuits are constructed. In a circuit which uses a spark-gap switch the voltage is also fixed by the choice of the gap's breakdown voltage. Thus, traditional spark generating circuits are designed to deliver a predetermined energy level, but that energy level is thereafter unadjustable. In addition, prior art circuits have not attempted to control the plume shape of sparks generated at a spark generating device.
Ignition systems have been constructed for use as test apparatus wherein the user can manually vary the energy delivered by the system by physically connecting or disconnecting multiple capacitors to achieve various total capacitance and, thus, various total stored energy. However, from a safety standpoint, the high voltage and current levels in this part of the circuit makes physically switching capacitors in or out of the circuit somewhat impractical; usually requiring power-down and physical reconnection before sparking can continue. In addition, these systems have been limited to adjusting the total energy delivered and have not provided any spark shaping capabilities or real time control over the intensity and shape of the sparks generated.
OBJECTS OF THE INVENTION
It is a general object of the invention to provide an improved method and apparatus for shaping and controlling sparks. More specifically, it is an object of the invention to provide an improved method and apparatus for controllably generating sparks wherein both the energy level and the profile over time of an energy pulse used to generate sparks at a spark generating device can be electronically adjusted to suit a given application.
It is another object of the invention to provide an apparatus which electronically switches multiple discharges into a common output for the purpose of creating an ignition spark event at a spark generating device. It is a related object to provide an apparatus wherein the total energy delivered to a spark generating device is the additive contribution of multiple discharge circuits. It is a related object to provide an apparatus which more reliably generates a significantly higher total energy output pulse than prior art circuits by using multiple independent discharge circuits which individually generate relatively lower energy outputs that are combined to achieve a high energy output pulse rather than increasing the stress on a single larger energy circuit.
It is another object of the invention to provide an apparatus which can deliver a specific level of energy to a spark generating device by intentionally discharging only a subset of the multiple discharge stages. It is a related object of the invention to provide an apparatus which selectively combines the outputs of two or more discharge stages having various output energy levels to generate final output pulses having a wide range of energy levels.
It is another object to provide an apparatus which employs a binary weighting of the values of the tank capacitors of the discharge stages to provide a greater variety of possible output energies.
It is yet another object of the invention to provide an apparatus which permits a user to adjust the voltage(s) of the tank capacitors in the individual discharge stages to scale their energy levels. It is another object to provide an apparatus which permits a user to both adjust the voltage(s) of the tank capacitors in the individual discharge stages and to select which stages to trigger thereby increasing the range of possible output levels so that output pulses having virtually any energy level (zero to maximum) can be generated.
Another object of the invention is to provide an apparatus which actively waveshapes its output pulse by timing the discharging of several discharge stages so that a pattern of overlapping, partially overlapping, or non-overlapping discharges form a waveshaped pulse for generating a spark having a given plume shape. It is a related object to provide an apparatus which generates an electrical waveform that imparts various characteristics to the physical time-varying shape of the spark plume created at a spark generating device.
It is still another object of the invention to provide an ignition system which achieves better ignition by optimizing the spark plume for best transferring its energy into the fuel mixture.
Another object of the invention is to provide a spark generating apparatus whose operation enhances the life of an associated spark generating device by controlling the spark plume to reduce the arc-induced erosion of the spark electrodes. It is a related object to provide an apparatus which ionizes the gap of a spark generating device to form a pla

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for controllably generating sparks in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for controllably generating sparks in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for controllably generating sparks in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2833550

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.