Radiant energy – Ionic separation or analysis – Ion beam pulsing means with detector synchronizing means
Reexamination Certificate
2006-02-28
2006-02-28
Lee, John R. (Department: 2881)
Radiant energy
Ionic separation or analysis
Ion beam pulsing means with detector synchronizing means
C250S281000, C250S282000, C250S283000, C250S286000, C250S288000, C250S293000
Reexamination Certificate
active
07005632
ABSTRACT:
System for control of ion species behavior in a time-varying filter field of an ion mobility-based spectrometer to improve species identification, based on control of electrical and environmental aspects of sample analysis.
REFERENCES:
patent: 2615135 (1952-10-01), Glenn, Jr.
patent: 3511986 (1970-05-01), Llewellyn
patent: 3621240 (1971-11-01), Cohen et al.
patent: 3931589 (1976-01-01), Aisenberg et al.
patent: 4025818 (1977-05-01), Giguere et al.
patent: 4201921 (1980-05-01), McCorkle
patent: 5420424 (1995-05-01), Carnahan et al.
patent: 5455417 (1995-10-01), Sacristan
patent: 5536939 (1996-07-01), Freidhoff et al.
patent: 5654544 (1997-08-01), Dresch
patent: 5723861 (1998-03-01), Carnahan et al.
patent: 5736739 (1998-04-01), Uber et al.
patent: 5763876 (1998-06-01), Pertinarides et al.
patent: 5789745 (1998-08-01), Martin et al.
patent: 5801379 (1998-09-01), Kouznetsov
patent: 5834771 (1998-11-01), Yoon et al.
patent: 5838003 (1998-11-01), Bertsch et al.
patent: 5965882 (1999-10-01), Megerle et al.
patent: 6066848 (2000-05-01), Kassel et al.
patent: 6107624 (2000-08-01), Doring et al.
patent: 6124592 (2000-09-01), Spangler
patent: 6239428 (2001-05-01), Kunz
patent: 6323482 (2001-11-01), Clemmer et al.
patent: 6495823 (2002-12-01), Miller et al.
patent: 6504149 (2003-01-01), Guevremont et al.
patent: 6512224 (2003-01-01), Miller et al.
patent: 6540691 (2003-04-01), Phillips
patent: 6621077 (2003-09-01), Guevremont et al.
patent: 6690004 (2004-02-01), Miller et al.
patent: 6787765 (2004-09-01), Guevremont et al.
patent: 6799355 (2004-10-01), Guevremont et al.
patent: 6806466 (2004-10-01), Guevremont et al.
patent: 2001/0030285 (2001-10-01), Miller et al.
patent: 2002/0070338 (2002-06-01), Loboda
patent: 2002/0134932 (2002-09-01), Guevremont et al.
patent: 2003/0020012 (2003-01-01), Guevremont, et al.
patent: 2003/0038235 (2003-02-01), Guevremont, et al.
patent: 2003/0052263 (2003-03-01), Kaufman et al.
patent: 2003/0089847 (2003-05-01), Guevremont et al.
patent: 2003/0132380 (2003-07-01), Miller et al.
patent: 2004/0094704 (2004-05-01), Miller et al.
patent: 966583 (1982-10-01), None
patent: 1337934 (1987-09-01), None
patent: 1627984 (1988-07-01), None
patent: 1412447 (1998-06-01), None
patent: 1485808 (1998-10-01), None
patent: WO 00/08454 (2000-02-01), None
patent: WO 00/08455 (2000-02-01), None
patent: WO 00/08456 (2000-02-01), None
patent: WO 00/08457 (2000-02-01), None
patent: WO 01/08197 (2001-02-01), None
patent: WO 01/22049 (2001-03-01), None
patent: WO 01/35441 (2001-05-01), None
patent: WO 01/69217 (2001-09-01), None
patent: WO 01/69220 (2001-09-01), None
patent: WO 01/69647 (2001-09-01), None
patent: WO 02/071053 (2002-09-01), None
patent: WO 02/083276 (2002-10-01), None
patent: WO 03/005016 (2003-01-01), None
patent: WO 03/015120 (2003-02-01), None
Buryakov, I.A., et al., “Separation of ions according to mobility in a strong ac electric field,” Sov. Tech. Phys. Lett. 17(6): 446-447 (1991).
Buryakov, I.A., et al., “Drift spectrometer for the control of amine traces in the atmosphere,” J. Analytical Chem. 48(1):156-165 (1993).
Guevremont, Roger and Purves, Randy W., “High field asymmetric waveform ion mobility spectometry-mass spectrometry: an investigation of leucine enkephalin ions produced by electrospray ionization,” J. Am. Soc. Mass. Spectrom. 10:492-501 (1999).
Handy, Russell et al., “Determination of nanomolar levels of perchlorate in water by ESI-FAIMS-MS,” JAAS 15:907-911 (2000).
Verenchikov, A.N. et al., Analysis of ionic composition of solutions using an ion gas analyzer, “Chemical Analysis of the Environmental Objects,” red. Miakhov. Novosibirsk, Nauka, pp. 127-134 (1991).
Guevremont, R., et al., “Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer, ” Review of Scientific Instruments, 70(2): 1370-1383 (1999).
E.V. Krylov, “A method of reducing diffusion losses in a drift spectrometer,” Technical Physics, 4d(1):113-116 (1999).
“Advanced cross-enterprise technology development for NASA missions,” Revised NASA Research Announcement NRA99-OSS-05 pp. 1-C-19 (1999).
Riegner, D.E., et al., “Qualitative evaluation of field ion spectrometry for chemical warfare agent detection,” Proceedings of the ASMS Conference on Mass Spectrometry and Allied Topics, pp. 473A-473B (Jun., 1997).
Carnahan, B., et al., “Field Ion Spectrometry—A New Analytical Technology for Trace Gas Analysis,” ISA, 51(1): 87-96, (1996).
Buryakov, I.A., et al., “A New Method of Separation of Multi-Atomic Ions by Mobility at Atmospheric Pressure Using a High-Frequency Amplitude-Asymmetric Strong Electric Field,” International Journal of Mass Spectrometry and Ion Processes, 128: 143-148, (1993).
Barnet, D.A., et al., “Isotope Separation Using High-Field Asymmetric Waveform Ion Mobility Spectrometry,” Nuclear Instruments & Methods in Physics Research, 450(1):179-185 (2000).
Guevremeont, R., et al., “Calculation of Ion Mobilities from Electrospray Ionization High Field Asymmetric Waveform Ion Mobility Spectrometry Mass Spectrometry,” Journal of Chemical Physics, 114(23):10270-10277 (2001).
Pilzecker, P., et al., “On-Site Investigations of Gas Insulated Substations Using Ion Mobility Spectrometry for Remote Sensing of SF6 Decomposition,” IEEE, pp. 400-403 (2000).
Krylov, E.V., “Pulses of Special Shapes Formed on a Capacitive Load,” Instruments and Experimental Techniques, 40(5):628, (1997).
Byrykov, I.A., et al., Device and Method for Gas Eletrophoresis, Chemical Analysis of Environment, edit. Prof. V.V. Malakhov, Novosibirsk: Nauka (1991) pp. 113-127.
Raiser, Y.P., et al., Radio-Frequency Capacitive Discharges, CRC Press, pp. 1-3 (1995).
“A Micromachined Field Driven Radio Frequency-Ion Mobility Spectrometer for Trace Level Chemical Detection,” A Draper Laboratory Proposal Against the “Advanced Cross-enterprise Technology Development for NASA Missions,” Solicitation, NASA NRA 99-OSS-05.
Carnahan, B, et al. “Field ion spectrometry-a new technology for cocaine and heroin detection,” SPIE, 2937:106-119 (1997).
Miller, R.A., et al., “A novel micromachined high-field asymmetric waveform-ion mobility spectrometer,” Sensors and Actuators B, B67(3):300-306, (2000).
Eiceman, G.A., et al., “Miniature radio-frequency mobility analyzer as a gas chromatographic detector for oxygen-containing volatile organic compounds, pheromones, and other insect attractants,” J. Chromatography, (2001), pp 205-217, 917.
Miller, R.A. et al., “A MEMS Radio-Frequency Ion Mobility Spectrometer for Chemical Agent Detection,” (June 2000) Proceedings of the 2000 Solid State Sensors and Actuators Workshop, Hilton Head, SC.
Miller, R.A. et al., “A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection,” Sensors and Actuators, (2001), pp 301-12, A91.
Schneider, A. et al., High Sensitivity GC-FIC for Simultaneous Detection of Chemical Warfare Agents, Mine Safety Appliances Co., Pittsburgh, PA, USA, (2000), AT-Process, pp 124-136, 5(3,4), CODEN: APJCFR ISSN: 1077-419X.
Krylov, E. V., “Comparsion of the Planar and Coaxial Field Asymmetrical Waveform Ion Mobility Spectrometer (FAIMS),” International Journal of Mass Spectrometry, 225:39-51, (2003).
Eiceman Gary A.
Krylov Evgeny
Miller Raanan A.
Nazarov Erkinjon G.
Lee John R.
Ropes & Gray LLP
Sionex Corporation
Souw Bernard E.
LandOfFree
Method and apparatus for control of mobility-based ion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for control of mobility-based ion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for control of mobility-based ion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3703584