Method and apparatus for connection to a rotatable antenna

Communications: radio wave antennas – Antennas – With radio cabinet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S906000

Reexamination Certificate

active

06469668

ABSTRACT:

THE FIELD OF THE INVENTION
The present invention relates to small-scale, rotatable antennas used with restricted profile devices in the computer and communications industry. More particularly, the present invention relates to a method and apparatus for reliably connecting to an antenna radiator which pivots on a hinge or similar mechanism and for connecting to associated ground plane elements.
BACKGROUND
Some standards in the electrical connector industry have been created by government regulation such as the Federal Communications Commission's Title 47, §68.500, otherwise denoted “Subpart F—Connectors” (Subpart F). Subpart F is incorporated herein by reference. Subpart F contains detailed specifications for “miniature” connectors used in the communications industry. Included in this specification are the “Miniature 6-position plug and jack” and the “Miniature 8-position plug and jack.” These connectors, commonly known as the RJ-11 connector and the RJ-45 connectors, respectively, are ubiquitous throughout the industry.
The miniature 6-position connector or RJ-11 has emerged as the industry standard connector for telephone lines. RJ-11 plugs and jacks are used on almost all telephone sets for connection to the phone system and consequently are used for standard modem connections which also use these telephone lines. Although most telephone companies use only 4 or 2 of the available positions on the connector, the 6-position connector is the standard.
The miniature 8-position connector or RJ-45 has become an industry standard connector for computer networks. It is used for inter-connectivity between network adapter cards, hubs, routers, switches and other network hardware.
These connectors have been the industry standard for many years and are likely to remain so in the future for telephones, desktop computer modems and network adapters, and other substantially stationary communications equipment. However, hardware technology and the “miniaturization” of components has progressed to the point that the standard, “miniature” RJ connectors have a larger cross-section than the thickness of the hardware to which they connect.
An example of these smaller, thin profile hardware configurations is the PC Card Standard promulgated by the Personal Computer Memory Card International Association (PCMCIA). The PCMCIA PC Card standard identifies three primary card type designations: Type I, II and III. These type designations correspond to physical dimension restrictions or “form factors” of 85.6 mm (length)×54.0 mm (width) and thicknesses of 3.3 mm, 5.0 mm and 10.5 mm respectively. These thin profile expansion cards are used to expand the functionality of computers and related products by adding circuitry contained on the card to the host device. Host devices, such as laptop computers, contain expansion slots which receive the expansion cards and provide electrical connections thereto. Modems and network adapters are often constructed in PC Card standard form factor.
As a consequence of hardware miniaturization in the face of a nearly worldwide RJ connector standard, hardware manufacturers have developed myriad proprietary hardware connection standards and an assortment of connectors and adapters that allow the RJ plugs to be connected to thin profile hardware.
One elegant and convenient connector which allows connection of the standard RJ type plug with thin profile hardware is the XJACK® produced by 3Com Corporation, Salt Lake City, Utah. The XJACK®, shown generally in
FIG. 1
, is a thin profile connector designed to be contained within hardware such as PC Card standard compliant devices. The XJACK® comprises a thin body
1
with an aperture
3
therein for receiving a standard RJ connector plug
5
such as a miniature 6-pin plug, a miniature 8-pin plug or some other connector. Jack conductors
7
contact plug conductors
9
just as a conventional RJ jack connects. The XJACK® may be retractable within the device or be detachable therefrom. Commonly used XJACK® connectors retract in and out of a device by sliding along a track. A spring is often used to bias the XJACK® connector such that it pops out of its retracted state and remains extended during use.
Wireless communication devices are now becoming commonplace in the electronics industry. Wireless networking of portable computers and associated devices is now replacing a large segment of the networking market. Wireless communication devices including wireless networking adapters, hubs and other equipment utilize radio transmitters and receivers to transmit data signals from one device or node to another. These radio transmitters and receivers must utilize a specific frequency band and protocol to accomplish this task. Since these wireless networks and communications areas may often overlap, standards, protocols and privacy protection are necessary. One current standard in the industry has been established by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) and is known as IEEE 802.11. This standard comprises communications standards, protocol and equipment specifications for wireless communication equipment including privacy and encryption provisions.
Another emerging standard in wireless communications and networking, known as Bluetooth®, is being established by a collaborative group of communications and computing companies. Devices incorporating Bluetooth® technology will utilize a micro-chip transceiver for communications between devices. Bluetooth® devices will transmit in the previously unused 2.4 GHz range. Bluetooth® technology promises to be a viable and economical networking solution for interconnection of cell phones, computers, printers, modems, computer peripherals, fax machines and other communications and computing devices. The size of the Bluetooth® transceiver will make it usable in devices as small as palm computers and cell phones.
Antennas are well known for enabling and improving transmission to radio receivers and from radio transmitters. Antennas can dramatically increase the range of radio transceivers, however most antenna designs function best when protruding from their host device. In small electronic devices protruding antennas are often vulnerable to breakage as the devices are often stowed in purses, pockets, backpacks and other areas where neglect can occur. A retractable antenna is more convenient and durable and occupies less space when retracted.
Because many antennas perform better when oriented in a vertical position, they often must be able to rotate from a horizontal “storage” position to an “in-use” vertical position. For compactness, they may then re-rotate to horizontal before retraction into a host device. This function is often achieved through a hinge or similar mechanism. While this rotation function is easily achieved with known methods and apparatus for the physical antenna itself, it presents a challenge to those designing the electrical connection to the movable or rotatable antenna.
Connection methods are known whereby a contact on one side of a hinge rests on a conductive portion of the other side of the hinge thereby effectuating electrical contact therebetween. However, this “wiper” technology presents a problem with antenna connections because the impedance of the connection varies considerably as friction, oxidation and corrosion affect the contact between the two materials. This variance in impedance can adversely affect the performance of a low power antenna such as those used with short-range wireless devices.
Conventional “flex” cables are also known for connection to a rotatable or movable extension or device. However, these connectors often require a minimum bend radius that precludes their use in more compact movable parts.
SUMMARY AND OBJECTS OF THE INVENTION
The present invention relates to small-scale rotatable antennas used in conjunction with electronic devices or extensions thereof. These hinged or otherwise rotatable antennas may connect directly to a small electronic host device or to a retractable extension thereon, however the electric

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for connection to a rotatable antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for connection to a rotatable antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for connection to a rotatable antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2979069

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.