Telecommunications – Transmitter and receiver at separate stations – Plural transmitters or receivers
Reexamination Certificate
1998-05-25
2003-04-15
Trost, William (Department: 2683)
Telecommunications
Transmitter and receiver at separate stations
Plural transmitters or receivers
C455S517000, C370S338000, C370S401000
Reexamination Certificate
active
06549786
ABSTRACT:
FIELD OF THE INVENTION
This invention pertains to wireless networks generally, and means for connecting wireless nodes or wireless LANs to wired LANs in particular.
BACKGROUND OF THE INVENTION
Local Area Networks (LANs) have historically consisted of nodes interconnected by physical telecommunications media (eg, coaxial cable, twisted pair wire, or fiber optics). We shall refer to such LANs as wired LANs.
Recently wireless LANs, the nodes of which are not connected by means of a physical medium, have started to appear in the market. These wireless LANs communicate by means of infra-red (IR), radio or other signals. One of the benefits of using wireless LANs is that cabling is not required. This is a particularly useful feature for mobile nodes such as laptop and notebook computers, PDAs (personal digital assistants), and the like. If appropriately equipped with an appropriate wireless adapter (which includes a transmitter/receiver and control card), such as an IR wireless Adapter, the mobile nodes can move around and remain connected to the network, provided they do not move out of range.
One method of implementing a wireless LAN is similar to a cellular phone network system. In this method wireless nodes do not communicate directly with each other, but rather send all signals to a central base station, which then redirects the signals to the destination node.
However, in certain situations, it is advantageous to allow each wireless node to communicate directly with other nodes, as is the case in most wired LANs. In a wireless LAN which permits this, the wireless adapter and controlling software transmit data packets which all nodes within range can hear. This permits transmitting of packets which are received but ignored by all nodes except the one(s) to which they are addressed. This parallels the packet delivery systems of such wired LAN protocols as Ethernet. Thus, upper level network operating system software, which relies on a packet delivery system such as Novell Corporation's NETWARE (tm) can be used with such a wireless LAN. We shall refer to such a wireless LAN as a Peer-to-Peer Wireless LAN.
There is an important physical characteristic in a peer-to-peer wireless LAN that makes it very difficult to build a reliable network compared to a wired LAN. In a wired LAN, every network node is physically connected to the network and can therefore access all of the network traffic. This is often not the case with wireless LANs. Each node communicates with other nodes by means of some form of electromagnetic signal, the range of which will be limited. Each node will have an area of coverage which will be limited by such factors as type of signal, signal strength, obstacles within range, etc. In the wireless LAN, it cannot be guaranteed that every network node, which is presumably part of the same wireless network, can listen to all the network traffic. For example, if nodes A, B, and C are connected to the same wireless network, A may be able to listen to the network data sent by B but not by C. In this case, C is a “hidden node” with respect to A. If C can listen to B but not to A, then A is a hidden node with respect to C.
For proper functionality, it is desirable that a wireless LAN should also be able to connect to a wired LAN. In wireless LANs using a base station approach, the Base Station can provide such connectivity. However, there exists a need for system which can provide internetworking services between a peer-to-peer wireless LAN and a wired LAN.
There are several problems associated with a wireless LAN which complicate the implementation of a simple bridge as a means for connecting a wireless LAN to a wired LAN. The primary function of such a device would be to resend overheard wireless LAN network data that is destined for a wired node onto the wired LAN, and vice versa. Depending on the wireless medium chosen, each such device would normally have a limited range. In order to provide adequate coverage, a plurality of devices, each having some degree of overlapping area is necessary. This would normally result in the duplication of messages received by nodes within the overlapping areas, and also on the wired LAN for messages originating from such nodes.
There exists a need for a system which solves these and related problems.
In this specification, the following terms are used:
By internetworking services, we refer to services which allow systems to communicate which could not otherwise. Typical internetworking services include relaying messages from one wireless node to another, resending messages from a wired LAN to a wireless node and resending messages from a wireless node to a wired LAN.
The internetworking node that provides such internetworking services is called an Access Point or AP. The AP is a physical device, which, in order to perform the full range of internetworking services has a wired network adapter as well as a wireless network adapter.
The physical area that a wireless node must be within to be within range of the AP is called the AP's Basic Service Area (BSA). If a wireless node is located within the BSA of a particular AP, that wireless node will be able to receive transmissions sent by that AP.
Each wireless node also has a limited range within which it can communicate. This range is called the Dynamic Service Area (DSA) of the wireless node in this specification. Other nodes within an wireless node's DSA will normally be able to receive transmissions from the wireless node.
If the wireless nodes use the same adapter as the APs, then, all other things being equal, the wireless nodes will have the same range as the APs. However there can be differences between the BSA range of the AP and the DSA range of a wireless node. For one thing, the wireless nodes are usually movable. Thus their range is likely to change, depending on how their signals are affected by obstacles as they move. Also, access points, being physically connected to a wired LAN, are also connected to a supply of power. Thus, the transmitter used in an AP can be more powerful than the battery powered transmitters of the wireless nodes. If this is the case, the BSA range of an access point would normally be larger than the DSA range of a wireless node.
In this specification, we will distinguish between the BSA of an AP and the DSA of a wireless node, even if the two ranges are the same. In this specification, one wireless node is said to be able to “hear” a second wireless node if it is within the DSA of the second node, so that signals sent by the second node can be received by it. Similarly, a wireless node can “hear” an AP if it is within the BSA of the AP, and an AP can “hear” a wireless node if the AP is within the DSA of that node.
A “multicast” message is a form of broadcast message, sent by a wired or wireless node, which is addressed to other nodes having the same specific group address. All other wired or wireless nodes will ignore that message.
SUMMARY OF THE INVENTION
The invention provides a method and a means for providing internetworking services to wireless nodes. The invention provides for an internetworking node which can either directly relay a message from one wireless node to another wireless node, or forward such messages indirectly by first resending them to another such internetworking node which in turn resends the message to the other wireless node. The internetworking devices themselves can communicate through the wireless medium. Preferably, such internetworking devices are interconnected by means of a wired LAN.
From a user's point of view, the invention makes such wireless nodes, as for example from a wireless LAN, and a wired LAN appear as a single logical LAN. The invention allows for integration of wireless nodes with existing wired LAN based network operating systems and network applications, by making each wireless node appear as wired network nodes to other wired network nodes when a wireless node sends data packets to a wired network node. Similarly, where a wireless node is part of a wireless LAN, the invention makes a
Cheung Roger Y. M.
McKay Danny N.
Reissner Peter E.
Cockburn Joscelyn G.
International Business Machines - Corporation
Sobutka Philip J.
Trost William
LandOfFree
Method and apparatus for connecting a wireless LAN to a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for connecting a wireless LAN to a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for connecting a wireless LAN to a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3104654