Data processing: generic control systems or specific application – Specific application – apparatus or process – Electrical power generation or distribution system
Reexamination Certificate
2000-10-24
2002-02-26
Grant, William (Department: 2121)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Electrical power generation or distribution system
C700S286000, C700S289000, C700S290000, C700S018000, C700S019000, C361S020000, C361S021000, C361S093200, C361S093600, C322S010000, C322S019000, C322S020000, C323S318000, C323S319000, C323S322000
Reexamination Certificate
active
06351692
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the control of electric generator sets (gensets) including an engine and an alternator. In particular, the present invention relates to the configuration of controllers that are used to control and monitor such gensets.
BACKGROUND OF THE INVENTION
Electric generator sets (or “gensets”) are widely used to provide electric power. A genset typically includes an engine coupled to an alternator, which converts the rotational energy from the engine into electrical energy. The terminal voltage of a genset is proportional to both the magnetic flux density within the alternator, and the speed of the engine. The magnetic flux density is typically determined by controlling an armature voltage or field current on the alternator, while the speed of the engine is typically determined by an engine governor.
It is known to employ a genset controller to control and monitor the operation of a genset, including the operation of the engine and alternator of the genset. In the past, genset controllers have been designed to control and operate with particular respective gensets. Because many gensets have had standard configurations and options, it was in some circumstances also possible to design genset controllers that could control and operate with multiple gensets, including gensets designed and manufactured by different companies.
Recently however, the variety of types and configurations of, and options available on, different gensets has increased such that it is becoming more difficult to design a “one-size fits all” genset controller. At the same time, because of an increased variety of genset manufacturers, it no longer suffices for the manufacturers of particular genset controllers to design genset controllers for use with only particular gensets. Clearly, a more flexible genset controller that is capable of being adapted for operation with a variety of different types and configurations of gensets, and/or a variety of options available on the gensets, is necessary in a modern marketplace in which many different gensets and genset configurations are available.
One example of the need for a more flexible genset controller relates to a new invention in the controlling of gensets concerning a thermal protection subroutine, which is described in a related patent application filed on the same date herewith, entitled “METHOD AND APPARATUS FOR PREVENTING EXCESSIVE HEAT GENERATION IN AN ALTERNATOR OF A GENERATOR SET”, which is hereby incorporated by reference herein. This invention allows a genset controller to monitor the currents flowing within the alternator of the genset and to prevent the flowing of excessive currents within the alternator, which can lead to excessive heat exposure and damage the alternator.
By employing this new invention, a circuit breaker is no longer necessary within the alternator itself to prevent excessive currents within the alternator, as it is with many conventional alternators. However, despite this invention, alternators without circuit breakers will continue to be manufactured, and so it will be desirable for genset controllers to have the capability to operate both with alternators that have circuit breakers and with alternators that do not have circuit breakers.
Many other examples of variable features of gensets also exist. For example, some gensets are now controlled in their operation (at least in part) by engine control modules (ECMs). Depending upon whether the gensets are controlled by such ECMs, more or less control is exercised by the genset controllers to control the operation of the gensets. Further, the control signals provided by the genset controllers depend at least in part upon whether the control signals are provided to ECMs that are coupled in between the genset controllers and the gensets, rather than provided directly to the genset controllers. Also, certain additional information concerning the operation of the gensets is available to be provided to genset controllers when ECMs are employed that is unavailable otherwise. For all of these reasons, therefore, it would be desirable for genset controllers to be capable of being configured to operate with gensets that both are and are not controlled by ECMs.
Further, because of the variation in the configurations of different gensets that exists today, the control signals that should be provided by a genset controller to one genset to produce optimal performance by that genset are often different from the control signals that should be provided to a second genset to produce optimal performance by that genset. This is particularly the case with respect to the regulation of the field volts (or current) or excitation level of the alternator, which influences the output voltage of the alternator, and which is often performed by a voltage regulator of the genset controller. When a genset controller is not well-tailored to the genset being controlled, the genset controller often is less able to accurately and quickly measure or respond to feedback from the genset concerning changes in the performance of the genset due to changes in the load or other factors, with the result being less than optimal performance of the genset. Consequently, it would be desirable for genset controllers to be capable of being configured to vary in their operation depending upon the genset being controlled so that, regardless of the genset, optimal performance would result.
It would therefore be advantageous if a genset controller was developed which was capable of being configured to control and operate with a variety of gensets of different types and configurations and having a variety of different options, where control is understood broadly to encompass operations such as monitoring operations. It would particularly be advantageous if the genset controller could be configured to operate both with gensets having alternators that included circuit breakers to preclude excessive current flow within the alternators, and with gensets that required control by a genset controller having a thermal protection capability. It would further be advantageous if the genset controller could be configured to operate with gensets being controlled by ECMs as well as gensets without control by ECMs. It would additionally be advantageous if the genset controller could be configured to operate in conjunction with a variety of gensets having a variety of different performance parameters and qualities. It would further be advantageous if the genset controller could be easily configured both at the factory and in the field, and if the genset controller was limited in its configurability to assure that improper configuration did not occur.
SUMMARY OF THE INVENTION
The present inventors have discovered that a genset controller can be programmed with a variety of parameters to configure the genset controller for operation with a variety of different gensets and genset options, including gensets operating both with and without ECMs. The genset controller, which is programmed with application software that governs the operation of the genset and does not vary in dependence upon the genset being controlled, is further programmed with personality profile data and user-settable data which does vary depending upon the genset being controlled. The personality profile data is typically programmed at the time of manufacture of the genset at the factory and cannot be modified thereafter, except for modifications by representatives of the manufacturer or the manufacturer's distributors in the field, while the user-settable data can be programmed at the factory and then reprogrammed by end users in the field.
In particular, the present invention relates to a genset controller that is configurable for controlling a variety of types of gensets. The genset controller includes a memory for storing a plurality of software routines, a personality profile data set, and a user-settable data set, and further includes a processor coupled to the memory for executing the software routines and reading data from t
Churchill Jonathan D.
Eaton Zane C.
Grant William
Kohler Co.
Patel Ramesh
Quarles & Brady LLP
LandOfFree
Method and apparatus for configuring a genset controller for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for configuring a genset controller for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for configuring a genset controller for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2980996