Method and apparatus for compensating for frequency drift in...

Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S343200

Reexamination Certificate

active

06453181

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
The invention generally relates to mobile communication systems and in particular to techniques for compensating for frequency drift in a low frequency clock employed during a sleep period between paging slots within a mobile station of a mobile communications system.
II. Description of the Related Art
Certain state of the art wireless communication systems, such as Code Division Multiple Access (CDMA) Systems, employ slotted paging to allow mobile stations to conserve battery power. In a slotted paging system, paging signals are transmitted from a base station to particular mobile stations only within assigned paging slots separated by predetermined intervals of time. Accordingly, each individual mobile station may remain within a sleep mode during the period of time between consecutive paging slots without risk of missed paging signals. Whether any particular mobile station may switch from an active-mode to a sleep mode depends, however, upon whether the mobile station is currently engaged in any user activity such as processing input commands entered by the user or processing a telephonic communication on behalf of the user. Assuming though that the mobile station is not currently engaged in any processing on behalf of the user, the mobile station automatically powers down selected internal components during each period of time between consecutive slots. One example of a slotted paging system is disclosed in U.S. Pat. No. 5,392,287, entitled “Apparatus and Method for Reducing Power Consumption in a Mobile Receiver”, issued Feb. 21, 1995, assigned to the assignee of the present invention and incorporated by reference herein.
Thus, within a slotted paging system, a mobile station reduces power consumption by disconnecting power from selected internal components during a sleep period between consecutive slots. However, even during the sleep period, the mobile station must reliably track the amount of elapsed time to determine when the next slot occurs to permit receive components of the mobile station to power up in time to receive any paging signals transmitted within the slot. One solution to this problem is to operate a high frequency clock throughout the sleep period and to track the amount of elapsed time using the high frequency clock. This solution allows the sleep period to be very precisely tracked using the high frequency clock. However, considerable power is consumed operating the high frequency clock and optimal power savings therefore are not achieved during the sleep period.
Hence, it would be desirable to instead employ an alternate low frequency, low power clock during the sleep period to further reduce power consumption. However, low frequency, low power clock signals typically suffer from considerable frequency drift such that the amount of elapsed time during the sleep period cannot be precisely determined. Frequency drift within a mobile station can be particularly significant as a result of temperature variations within the mobile station either as a result of changes in operation of components of the mobile station or as a result of ambient conditions of the mobile station. For example, during an extended telephone call, components of the mobile station may heat to 87 degrees Celsius. During an extended period of inactivity, the temperature of the components may cool to an ambient temperature of, perhaps, 25 degrees Celsius. Moreover, if the user places the mobile telephone in either a very hot or very cold location, the temperature change may be even more significant. Typical low power, low frequency clock signal generators are significantly affected by even relatively minor temperature changes and are even more strongly affected by such broad changes in temperature. Indeed, the amount of drift in a typical low power, low frequency clock signal is sufficiently great such that if used by itself to calculate the elapsed time, there is significant risk that the mobile station will not be reactivated in time to power up components to detect a paging signal transmitted within a next paging slot. Accordingly, important paging signals maybe missed possibly resulting in missed phone calls and the like.
Hence, when using a low-frequency clock signal to track time during a sleep period, the mobile station is typically configured to return to an active mode by activating a high frequency clock signal well in advance of a next expected paging slot to thereby avoid possible timing errors. Thus, for example, if the paging slots occur every 26.67 milliseconds, the mobile station may be programmed to activate the high frequency clock and to power up receive components after only, for example, 26 milliseconds of sleep to ensure that the next paging slot is not missed. Hence, optimal power savings are not achieved.
One technique that has been proposed for compensating for timing errors inherent in low frequency, low power clock signal generators is to adapt a length of a current sleep period based upon a timing accuracy of a previous sleep period. More specifically, if a previous sleep period was determined to be too long due to timing errors in the low power, low frequency clock generator, the mobile station is programmed to wake up earlier in the current sleep period. To determine whether a sleep period is too long or too short, the mobile station attempts to detect a unique word within a received paging signal, such as a message preamble which signifies the beginning of an assigned slot. If the unique word is not detected, the mobile station concludes that it woke up too late and therefore the sleep duration is decreased for subsequent sleep periods. If the unique word was properly received, the mobile station either woke up on time or wake up too early and the sleep duration is increased slightly for the subsequent sleep period. One problem with the aforementioned technique is that it assumes that any failure to detect the unique word is a result of a timing error. However, there may be other reasons besides the duration of the sleep period that the unique word was not correctly received and demodulated, such as poor communication channel quality conditions. Moreover, even if failure to detect the unique word was a result of a timing error rather than other communication errors, the system still does not precisely correct for errors in the low power, low frequency clock signal and therefore does not provide for optimal power savings.
A significant improvement is provided in U.S. patent application Ser. No. 09/134,808, entitled “Synchronization of a Low Power Oscillator with a Reference Oscillator in a Wireless Communication Device Utilizing Slotted Paging”, filed Aug. 14, 1998 and assigned to the assignee of the present invention. In the aforementioned patent application, timing errors are corrected without relying upon the failure to receive portions of transmitted signals. Rather, the system includes a frequency error estimation unit for directly estimating the frequency of the low power, low frequency clock. In one example described in the patent application, the frequency error in the low frequency clock is determined by timing the low frequency clock using a high frequency clock during periods of time when the high frequency clock is active. For example, during each paging slot when the high frequency clock signal of the mobile station is activated, the frequency error in the low frequency clock is calculated based upon the high frequency clock. Additionally, the system operates to synchronize the activation of the high frequency clock very precisely to transitions in the low frequency clock signal to further reduce errors.
Although the system of the aforementioned patent application provides a significant improvement over systems which rely on the detection of unique words of signals transmitted to the mobile station, considerable room for improvement remains. To permit the mobile station to respond promptly to any keys that have been pressed by a user during a sleep period, it is often desirable to subdivid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for compensating for frequency drift in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for compensating for frequency drift in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for compensating for frequency drift in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2854498

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.