Method and apparatus for communicating between an aircraft...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Aeronautical vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S001000, C244S002000

Reexamination Certificate

active

06615116

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a signal conditioning method and apparatus and, more particularly, to a method and apparatus communicating between an aircraft and an associated store.
BACKGROUND OF THE INVENTION
Modern aircraft, such as an F-15E aircraft manufactured by the assignee of the present invention, and the P-3, the S-3 and the F-16 aircraft manufactured by Lockheed Aeronautical Systems Company, are adapted to carry stores. These stores can, for example, include missiles, such as the Joint Direct Attack Munition (JDAM), Walleye missile, the Standoff Land Attack missile (SLAM), the SLAM-ER, the Harpoon missile, and the Maverick missile. A missile is generally mounted to the wing of a host aircraft, typically via disconnectable pylons, such that the aircraft can carry the missile to the vicinity of the target destination prior to its deployment.
Prior to and during deployment of a store, the aircraft and the associated store communicate. For example, signals are bidirectionally transmitted between the aircraft and the store to appropriately configure and launch the store. This prelaunch configuration can include downloading the coordinates of the target and initializing the various sensors of the store. In addition, a store, such as a SLAM missile, can transmit a video image, typically via radio frequency (RF) signals, of the target to the aircraft after deployment so that the flight path of the store can be monitored, and, in some instances, controlled to provide greater targeting accuracy.
In order to provide bidirectional signal transmission between the aircraft and the associated store, a host aircraft typically includes an aircraft controls and displays module under the control of a central computer, or aircraft controller. The aircraft controls and displays module provides an interface by which the crew of the aircraft can monitor and control their flight pattern and can provide armament control, such as to control the deployment of the associated store. The aircraft controls and displays module typically includes both discrete controls, such as toggle switches, as well as a joystick for positioning and selecting a cursor within the associated display. The aircraft controls and displays module also provides the necessary avionics to fly the aircraft and to communicate with other aircraft and ground base control stations.
Both the aircraft and the associated store typically process signals according to a predetermined format. As used herein, format refers not only to the actual configuration of the data structures, but also to the content and order of transmission of the signals. The predetermined formats of the aircraft and the store are oftentimes different. In order to ensure proper signal reception by the host aircraft and the associated store, the signals must thus be provided to the aircraft or store in the predetermined format that the aircraft or store is adapted to process.
Aircraft are typically designed to carry a plurality of stores, some of which may process signals according to the same format as the aircraft, and others which may process signals according to a different format. Many aircraft, such as the F-16 Block 60 aircraft, process signals according to a Mil-Std-1760 format. Certain types of missiles, such as the SLAM-ER missile, the JDAM missile, communicate according to the Mil-Std-1760 format. It is not uncommon, however, for other types of stores associated with the F-16 aircraft to process signals according to a different signal format. Missiles such as the Harpoon Block I missile, the SLAM missile, and the Harpoon Block II missile, communicate according to a MK 82 data format. In this regard, the MK 82 and the Mil-Std-1760 formats are different, not only in their respective data structures, but also in the physical connections required for their respective interfaces.
To facilitate the communication between the aircraft and the stores that process signals according to a different format, these stores are coupled to a tailored electronics or avionics system. This avionics system, generally referred to as a weapon interface system (WIS), serves as an interface between the aircraft, specifically the aircraft controller, and the store. With respect to Harpoon Block I missiles, which process signals according to the MK 82 format, a device such as a Harpoon Interface Adapter Kit (HIAK) may generally serve as an interface between the missile and aircraft such as the F-16 aircraft, wired for carriage of 1760 type stores. The HIAK typically receives commands from the aircraft controller according to the 1760 format and translates these commands to provide MK 82 formatted data usable by Harpoon Block I missiles. In addition, the HIAK controls and provides launch power to the aircraft ejectors which eject the Harpoon from the aircraft.
Whereas the HIAK is an adequate apparatus for allowing a 1760 type aircraft to communicate with an MK 82 type Harpoon Block I missile, it has drawbacks. First, the HIAK only supports one MK 82 data format data rate transfer. In this regard, various Harpoon missiles communicate according to the MK 82 data format at different transfer rates. For example, Harpoon Block I missiles use a 100 KHz clock strobe to transmit a 16-bit data word plus a checksum bit in 1700 microseconds, whereas as Harpoon Block II missiles use a 100-300 KHZ clock strobe to transmit a 16 bit data word plus the parity bit in 300 microseconds. Typically, conventional HIAKs translate commands into MK 82 format at only one set transfer rate, typically that of the Harpoon Block I missile. In this regard, the HIAK cannot not support multiple MK 82 data format transfer rates, such as that of both the Harpoon Block I and Harpoon Block II missiles.
Second, the HIAK typically comprises a separate electronic box and set of cables, mounted on a pylon or launch platform and physically detachable from the aircraft to facilitate interchangeability and maintainability. In this regard, the HIAK generally requires an unnecessarily large amount of space on the aircraft and adds undesirable weight to the aircraft. Additionally, because of the number and type of discrete components that make up the HIAK, the HIAK is generally a very expensive interface. Also, because of the complexity of the HIAK, it can be very hard to connect and disconnect from the aircraft as the types of stores attached to the aircraft change. As such, the HIAK missionizes the aircraft by requiring a dedicated aircraft to perform separate missions depending on the desired type of store for the mission.
SUMMARY OF THE INVENTION
In light of the foregoing background, the present invention provides an improved signal conditioning element that provides expanded formatting function to add compatibility for the various transfer rates of the MK 82 data format. Additionally, the signal conditioning element of the present invention can be implemented in an application specific integrated circuit (ASIC). In this regard, the signal conditioning element provides signal conditioning between the aircraft and store in a manner that is less expensive than the conventional HIAK, and requires less space and weight. Also, by requiring less space, the signal conditioning element of the present invention can be integrated into a store umbilical that couples the aircraft and the store, or into an aircraft pylon wiring. As such, the signal conditioning element can be easily installed and changed to accommodate different types of stores, thereby eliminating the missionizing associated with conventional HIAKs. According to one embodiment, the present invention provides a signal conditioning system for translating communications between an aircraft and an associated store. The system includes a store umbilical element that electrically and mechanically couples the aircraft and the store, and facilitates communications between the aircraft and associated store. The store umbilical element includes an aircraft connector and a store connector. The aircraft connector is electrically connected t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for communicating between an aircraft... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for communicating between an aircraft..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for communicating between an aircraft... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3105928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.