Material or article handling – Process – Of loading or unloading load-transporting type vehicle and...
Reexamination Certificate
1998-03-26
2002-12-17
Krizek, Janice L. (Department: 3652)
Material or article handling
Process
Of loading or unloading load-transporting type vehicle and...
C414S396000, C414S401000, C414S498000, C414S518000
Reexamination Certificate
active
06494671
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a method and apparatus for collectively changing components at a component supply section. For example, it relates to a method and apparatus for collectively changing components and a truck thereof to be applied to a component supply section of an objective working machine which uses a component supply cassette for feeding one-by-one a variety of minute components to be mounted to an electronic circuit board to supply them for use, thereby collectively changing components in units of a specified number of component supply cassettes.
BACKGROUND ART
When mounting electronic components onto electronic circuit boards, it is required to supply a number of electronic components at high speed.
Therefore, as a method of supplying electronic components, or in particular minute electronic components at high speed, there has been conventionally known a component supply cassette which handles minute components as so-called taping components formed by storing components in a number of component storing sections that are arranged in one direction of a storage tape and opened at a surface side. Thereafter, a covering tape is attached to the storage tape and it peels off the covering tape while feeding the taping components at a specified pitch to release each component storing section in a component supply position. This allows the component released in the component supply position to be taken out by a suction nozzle or the like for use.
On the other hand, as a substitute for it, there has been used a component supply cassette which stores a variety of components such as minute electronic components in a bulk cassette. The supply cassette then stirs up the components in a turbulence chamber by air while supplying the components into the turbulence chamber. The components that have been directed in a specified direction are transferred into a component feed path, and are fed to a specified component supply position by air while being aligned in a line in the component feed path to subject the components to use.
FIG. 27
shows a mounter A which uses such component supply cassettes B. This mounter A is to mount an electronic component “b” onto a printed board “a”. A number of component supply cassettes B are arranged laterally in series corresponding to the number of types of electronic components “b” necessary for the mounter A on a component supply table “c” which serves as a component supply section provided beside the mounter A. The component supply unit B that is retaining the electronic component “b” of the type required each time is moved to the component supply position opposite to the mounter A.
The shown component supply cassette B is a type that uses a taping component. Including a component supply cassette of a type that feeds components from a bulk cassette while aligning them by air and the like, a cassette width C is set to, for example, about 16 mm. About 60 units of such cassettes are arranged in series on the component supply table “c” to be used properly at need.
For the above proper use, the component supply table “c” reciprocates the approximately 60 seriately arranged units of the component supply cassettes B in a direction in which they are arranged (i.e., in the x-direction in the figure). This shifts the required component supply cassette B to the component supply position.
The mounter A sucks each electronic component b that has been supplied from the component supply cassette B and placed in the component supply position by a suction nozzle “e” provided at a component mounting head “d” to mount the component onto the printed board “a”. The printed board “a” is placed on an X-Y table “f”s as to be capable of moving in two directions of x and y that are perpendicular to each other, and is subjected to movement control in the two directions of x and y. Therefore, the electronic components “b” transferred to the mounting position as sucked by the suction nozzle “e” can be mounted at a specified position on the printed board “a”.
When the components in the component supply cassette B are depleted or when the type of required component is to be changed, the component supply cassette B placed on the component supply table “c” is removed and replaced by a new component supply cassette B.
In order to surely supply the components from each component supply cassette, it is required to correctly position each component supply cassette B on the component supply table “c” and constantly correctly position the cassette corresponding to the component selection in the component supply position. Therefore, each component supply cassette B is provided with a positioning pin “p” as shown in FIG.
27
. By being engaged with a positioning hole (not shown) provided on a support surface of the component supply table “c”, the pin is correctly positioned in height, depth and width. A reel setting portion is received from below by a corrugated guide “q” provided at a portion of the component supply table “c” as shown in
FIG. 28
to prevent the possible transverse vibration.
However, if the component supply cassette B is positioned one by one, it takes much time and labor, and this results in a low working efficiency. Furthermore, the operation of the objective working machine is stopped during this time, so that the productivity of the electronic circuit board or the like is lowered. Particularly in the case of a high-speed objective working machine or in the case of an objective working machine which simultaneously produces two electronic circuit boards, a high component consumption rate results. Therefore, it is desired to further increase the efficiency of the component changing procedure.
For the above reasons, a conventional cassette changing rack “i” as shown in
FIG. 28
can be loaded with a number of component supply cassettes B to collectively handle them in changing each component supply cassette B on the component supply table “c.” This changing rack is able to be mounted on and dismounted from the component supply table “c.” The cassette changing rack “i’” serves to be carried by, mounted on and dismounted from the component supply table “c” while being loaded with a specified number of component supply cassettes arranged in series in a widthwise, direction, positioned, and retained. The changing rack “i” is positioned by engaging a clamp arm ‘“j” as shown in
FIG. 28
with a part of the component supply table “c” in the mounting stage.
With the above arrangement, it is proper to preparatorily perform the loading and changing of the component supply cassettes B in the cassette changing rack “i” regardless of the mounting of the rack “i” to the component supply table “c” and change it for the cassette changing rack “i” mounted already on the component supply table “c” at the required point of time, so that the working efficiency increases.
However, according to the above-mentioned conventional art collective changing method, when handling the cassette changing rack “i”, the operator lifts up its whole body by a pair of left and right carrying handles “k” provided at the cassette changing rack “i”, carries it, and performs mounting and dismounting of the base at the component supply table “c”. Therefore, the seriate number of the component supply cassettes B that can be handled collectively is limited in weight to about 10 kg, and this also leads to a limitation in weight to a seriated ten small-size component supply cassettes B. Furthermore, since the whole body is heavy and bulky, it is uneasy to handle, and much labor is required for the positioning work. Consequently, no reduction in time corresponding to the seriated number of cassettes collectively handled can be achieved and consequently about 30 minutes are taken, so that a further increase in efficiency is required. Furthermore, the positioning by the clamp arm “j” is hardly effective throughout the whole body of the cassette changing rack “i”. In addition, because the cassette changing rack “i” loaded with the component supply cassettes B is heavy and uneasy to handle, the
Hata Kanji
Kuribayashi Takeshi
Naito Takao
Narikiyo Kazuhiko
Nishida Hiroyoshi
Krizek Janice L.
Matsushita Electric - Industrial Co., Ltd.
Wenderoth , Lind & Ponack, L.L.P.
LandOfFree
Method and apparatus for collectively changing components at... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for collectively changing components at..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for collectively changing components at... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2993773