Gas separation: apparatus – With gas and liquid contact apparatus – Movably mounted contact liquid distributor
Reexamination Certificate
2001-07-06
2002-05-21
Smith, Duane S. (Department: 1724)
Gas separation: apparatus
With gas and liquid contact apparatus
Movably mounted contact liquid distributor
C096S284000, C096S323000, C261SDIG003
Reexamination Certificate
active
06391100
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to the field of cleaning a gas stream and more particularly to a method and apparatus for removing particulates and absorbing undesired gases from a gas stream and emitting a cleansed gas by mixing a gas with a liquid in an economical manner.
BACKGROUND INFORMATION
It is very often desirable to clean a gas stream of particulates and/or undesirable gases. Some gases, such as industrial emissions, must be cleansed or scrubbed until the emission meets legally regulated standards to be emitted into the atmosphere. Car emissions must meet legal standards, at least once a year. It is also becoming more desirable and popular to clean air in domestic settings. In fact, there are studies indicating that indoor pollution may be as great, if not a greater risk, to the individual health than outdoor pollution.
Indoor air quality is made worse by the fact that is usually entrapped and recirculated in structures that are sealed to a greater extent than in the past for energy saving reasons. The air which we inhale and exhaled is continually picking up particulates and becoming more comprised of other gases such as carbon dioxide and carbon monoxide in proportion to the oxygen and nitrogen content of the air. Domestic pollution is becoming an increasing health hazard seriously effecting the young an old, those with respiratory problems, asthma and allergies. Some of these irritants and pollutants include, but are not limited to, allergens such as pollen, mold spores, pet dandruff and dust, and gases such as carbon dioxide, carbon monoxide and naptha. Additionally, the surrounding air contains bacteria, viruses and odors that are undesirable.
Several methods are currently used to attempt to clean or partially clean gases such as air in a domestic setting. One of the most common methods of “cleaning air” is the utilization of filter systems. Typical filter systems for domestic use utilize a fan to circulate air from the environment through a mesh filter and at times through an additional charcoal source to absorb odors. These systems are very limited in the particulate size that is removed and only mask odors without addressing gases included in surrounding air. For these prior art systems to be even limitedly efficient it is required to frequently replace and/or clean the filters.
Other current and prior art air cleaning devices include electrostatic devices that electrically charge particles for capture. Again, this cleaners are very limited what is removed and the quantity of removal of particulate. Another drawback with electrostatic cleaning devices is that the charged dust particles that are emitted excessively collect on furniture, drapes, blinds, frames and the like.
Another type of gas cleaner requires the use of a venturi for scrubbing the gas. A venturi gas scrubber is a wet scrubber effective for removal of noxious gases, fumes, odors, particles and dust from a gas stream. Essentially, these type of scrubbers utilize a high velocity motive fluid stream passed through a constricted area to mix the gases with the motive fluid, absorb the selected gases and wet the small particulates for removal. The motive stream and mixed gas are impacted dropping out the particulates. Additionally, the undesired gases and odors are eliminated through absorption or chemical reaction between the undesired gases and the motive or scrubbing fluid. Passing the carrying gas through a mechanical cyclone may eliminate the particles. The primary deficiency in these type gas scrubbers is the pump. The pump required for the motive fluid is expensive, bulky and noisy.
It is therefore a desire to provide a method and apparatus for cleansing a gas utilizing a gas scrubbing system that reduces the pump requirements for a quantity of gas to be scrubbed. It is a further desire to eliminate the requirement of a conventional pump while mixing a liquid with a gas for scrubbing the gas.
SUMMARY
A system and method of cleansing a gas of undesired particulate, aromas, and gases of the type utilizing a liquid to wet a gas stream is provided. The gas scrubber of the present invention including: a container having a bottom wall and a top wall interconnected by a side wall and containing a liquid therein, the top wall having an opening formed therethrough by a sleeve having an inlet opening and an outlet opening interconnected by a throat, and a means of pressurizing the liquid that may include a pump for directing the pressurized liquid through a converging nozzle discharging the pressurized liquid into the throat to draw a gas into the inlet opening and mix with the pressurized liquid in the throat and discharging the mixture into the container releasing the gas from the mixture and discharging the gas to the atmosphere. Undesired gases are removed from the original stream by absorption in the liquid and particulate is dropped out of the gas stream after being wetted by the liquid.
An oblong nozzle that produces a thin flat stream may be desired to decrease the pump requirements for scrubbing a gas stream. Additionally, it may be desired to form an oblong throat to combination with the oblong nozzle discharge.
A mechanically rotated disk located upstream of the nozzle may be utilized to impart additional energy to the liquid stream as it passes through the nozzle to further reduce the conventional means of pressurizing the liquid. The disk may also have channels formed thereon to aid in imparting energy to the liquid.
It may further be desired to eliminate a conventional pump by utilizing a rotating siphon pipe to energize the liquid to create a motive fluid to mix with the gas to be cleaned. The siphon being rotated to draw and energize fluid from the container and discharge it through a nozzle to draw a gas to be cleansed into the throat for mixture with the liquid and discharged back into the container. Different design configurations of the siphon pipe may be utilized. In particular it may be desired to have a conical siphon pipe having a section having a smaller diameter closer to the inlet than the section of the section pipe approximate the outlet.
The discharged mixture drops out particulate and the liquid absorbs selected gases. The cleansed gas may then be released to the atmosphere. The partially cleansed gas may be routed through a separating device such as mechanical cyclone to drop out additional particulate and entrained liquid.
It should be realized in conjunction with the description of the device that various elements of the invention may be utilized in numerous combinations to achieve the desired results of the invention. For example, and not for limiting purposes, the system may utilize an oblong nozzle and oblong throat in combination with a conventional pump, reducing the pumping requirements typically required by prior art devices for the same amount of gas to be cleansed and liquid for cleansing. Additionally, the conventional pump may be eliminated by use of the siphon pipe singularly or in combination with other elements described.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of a preferred embodiment of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
REFERENCES:
patent: 2200891 (1940-05-01), Nyborg
patent: 2396526 (1946-03-01), Nilsson
patent: 2941872 (1960-06-01), Pilo et al.
patent: 3005515 (1961-10-01), Caddell
patent: 3149935 (1964-09-01), Jamison et al.
patent: 3321191 (1967-05-01), Najarian
patent: 3379422 (1968-04-01), Liesenhoff
patent: 3385030 (1968-05-01), Letvin
patent: 3448562 (1969-06-01), Wisting
patent: 3517485 (1970-06-01), Dell'Agnese et al.
patent: 3524631 (1970-08-01), Mare
patent: 3581467 (1971-06-01), Donnelly
patent: 3789585 (1974-02-01), Arnold et al.
patent: 3939283 (1976-02-01), Solis
patent: 4478616 (1984-10-01), Jarvenpaa
patent: 4514194 (1985-04-01), Jarvenpaa
patent: 4
Ehrlich Henry L.
Smith Duane S.
Winstead Sechrest & Minick
LandOfFree
Method and apparatus for cleaning a gas does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for cleaning a gas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for cleaning a gas will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2881751