Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2000-10-13
2002-09-10
Martin, David S. (Department: 2841)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S739000, C361S748000, C361S761000, C428S900000, C428S901000, C434S250000, C434S260000, C434S052000, C335S205000, C335S207000
Reexamination Certificate
active
06449167
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a method and system with breadboard and associated magnetic holders used to design, build, and test prototype electrical circuits and is especially useful to teach the technology of electronics.
Electrical circuits are typically prototyped using a printed circuit board which is commonly referred to as a breadboard. A typical breadboard contains a plurality of plated through holes that are coupled to conductive pins or shorting clips. Discrete electrical components are soldered and coupled together by wires which are wrapped around corresponding pins or inserted into the holes of the shorting clips. The discrete components may include integrated circuits, individual transistors, resistors, capacitors, diodes, transformers, batteries, light emitting diodes, and they are all connected to create an electrical circuit.
In the case of wire wrapped breadboards connecting together individual components is a time consuming process, typically requiring the user to wire wrap and/or solder each lead of each component. The final layout for this method may have many wires crossing and will not resemble the final layout of a finished printed circuit board used in production. Parts cannot be removed easily to study the effect of such a removal or demonstrate their function.
In the case of breadboards that use shorting clips, each connection wire must be inserted into the proper shorting clip hole as the circuit is being built. The shorting clips are usually very close to each other and the final layout very rarely resembles the layout of the production circuit. After many parts are connected it may be difficult or even impossible to remove devices buried under the wires used to interconnect the parts. Also the circuit on this type of breadboard is very difficult to trace for errors.
It would be desirable to provide a breadboard with associated electronic device holders which would considerably reduce the time needed to construct, test, and modify a prototype circuit. It is even more desirable if the final breadboard layout resembled the production circuit with a multi-layer breadboard having components visible above the conductive paths and similar to the final board layout to be used in production type circuits.
It is, therefore, desirable to provide an improved circuit board and method of constructing the same, which attains the preceding objectives and overcomes most, if not all, of the preceding problems.
BRIEF SUMMARY OF THE INVENTION
An improved method and apparatus for building and testing electronic circuits is provided which is user-friendly, easy to install and assemble, and fun. Advantageously, the reliable method and apparatus for building and testing electronic circuits provides a convenient breadboard with associated electronic device holders which can considerably reduce the time needed to construct, test and modify an electronic circuit. Desirably, the final breadboard layout can resemble a production circuit with a single or multi-layer breadboard having components visible above the conductive paths so as to appear similar to the final board layout to be used in production type circuits. The attractive and convenient method and apparatus for building and testing electronic circuits can be in the form of a kit and is especially useful to teach the technology of electronics.
One method of constructing a magnetically attractive circuit board can comprise: positioning conductive paths on an insulating material by attaching conductive metallic foil on one side of the insulating material, and placing the other side of the insulated material over a magnetically attractive material. The circuit board can comprise multiple layers in which the conductive metallic foil is crossed and insulting portions comprising insulating tape are placed between the conductive metallic foil at a location where the foil is crossed to separate and insulate the crossed foil. The conductive metallic foil can also be partially or fully wrapped around the insulating material in order to make contact with pads, preferably magnetically attractive pads, to make connection to off board modules. In the preferred method, the desired circuit is printed on the insulating material.
The improved circuit board can comprise: electrical components with leads providing contacts, conductors for connecting the electrical components, and magnets to secure the contacts of the electrical components to the conductors. The improved circuit board can have a breadboard comprising a magnetically attractive material. Desirably, the circuit board assembly can also include magnet-containing holders to hold the electronic components, as well as contain the magnets. Preferably, the magnets are of sufficient magnetic strength to securely engage the magnetically attractive material of the breadboard. The conductors preferably comprise conductive metallic foil, which can be bent around or wrapped over an edge of the insulating material. In the preferred form, a case is provided to house the electronic components. Various modules can be mounted to the case, such as: power sources, signal generators, test equipment, speakers, switches, logic level indicators, modems, cables, amplifiers, transistors, regulators, filters, oscillators, converters, rectifiers, drivers, detectors, modulators, timers, phase lock loops, integrators, differentiators, sample and hold circuits, integrated circuits, and/or batteries.
In the preferred form, an apparatus is provided to build or test an electronic circuit. The portable lightweight apparatus can include a circuit board, an electronic circuit, and an insulating support. The circuit board can provide a breadboard which can comprise a substantially solid and imperforate solid electrically conductive support with a magnetically engageable surface. The electrically conductive support preferably comprises a magnetically attractive material to engage and be attracted to one or more natural magnets. The magnetically attractive material can comprise a sheet of metal fabricated of steel or iron.
The electronic circuit desirably comprises one or more electronic devices connected to electrical conductors. The electronic devices can comprise one or more electronic components with leads that provide electrical contacts to engage the conductors. The conductors preferably comprise electrically conductive metallic foil which is positioned between the electronic devices and the breadboard. If desired, the metallic foil conductors can cross over each other and be separated from each other at an intersection by insulating tape. The electronic components can comprise one or more resistors, capacitors, diodes, light-emitting diodes, transistors, inductors, integrated circuits, batteries, switches, lamps, lights, transformers, speakers, amplifiers, logic level indicators, regulators, signal filters, oscillators, converters, rectifiers, modulators, drivers, detectors, integrators, differentiators, timers, microprocessors, central processing units, computers, calculators, testers, phase lock loops, audible signaling devices, and/or visual signaling devices.
The insulating support can comprise an electrical insulating non-magnetic material, which is positioned between a substantial amount of the conductors and the breadboard. The insulating support can have a conductor-engaging support surface to engage and support a substantial amount of the conductors, and can have a breadboard-facing surface to engage the magnetically engageable surface of the electrically conductive support of the breadboard. The insulating support can comprise a flexible sheet of insulating material comprising paper, paperboard, plastic, tape, or rubber. In the preferred form, the conductor-engaging support surface of the insulating support has a diagram of the electronic circuit printed thereon. The electrically conductive metallic foil can be secured to the conductor-engaging support surface of the insulating support by one or more connectors, such as by adhesive tape, transparent tape, electrica
Bui Hung
Martin David S.
Seymour Arthur F.
Tolpin Thomas W.
Welsh & Katz Ltd.
LandOfFree
Method and apparatus for building and testing electronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for building and testing electronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for building and testing electronic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2864013