Liquid purification or separation – Processes – Treatment by living organism
Reexamination Certificate
2001-05-29
2003-09-09
Upton, Christopher (Department: 1724)
Liquid purification or separation
Processes
Treatment by living organism
C210S629000, C210S150000, C210S194000, C210S195100
Reexamination Certificate
active
06616845
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to water treatment generally and more particularly to systems and methodologies for biological water treatment.
BACKGROUND OF THE INVENTION
The following patents and publications are believed to represent the current state of the art:
U.S. Pat. Nos. 3,133,017; 4,045,344; 4,137,171; 4,231,863; 4,256,573; 4,374,730; 4,394,268; 4,521,311; 4,454,038; 4,521,311; 4,566,971; 4,599,174; 4,810,377; 4,820,415; 4,839,053; 5,030,353; 5,200,081; 5,202,027; 5,554,289; 5,698,094; 6,036,863.
French Patent FR 2,707,183.
A NEW PROCESS FOR ENRICHING NITRIFIERS IN ACTIVATED SLUDGE THROUGH SEPARATE HETEROTROPHIC WASTING FROM BIOFILM CARRIERS by Denny S. Parker, Bjorn Rusten, Asgeir Wien and Jon G. Siljudalen, Brown and Caldwell, P.O. Box 8045 Walnut Creek, Calif. 94596-1220, WEFTEC 2000, Copyright 2000 Water Environment Federation;
PILOT STUDY TO FULL SCALE TREATMENT-THE MOVING BED BIOFILM REACTOR EXPERIENCE AT THE PHILLIPS 66 BORGER REFINERY by Chandler H. Johnson and Michael W. Page, WEFTEC 2000, Copyright 2000 Water Environment Federation;
UPGRADING TO NITROGEN REMOVAL WITH THE KMT MOVING BED BIOFILM PROCESS by Bjorn Rusten, Jon G. Siljudalen and Bjornar Nordeidet, Wat. Sci. Tech. Vol 29, No. 12, pp 185-195, 1994;
THE TWO STAGE MOVING BED/ACTIVATED SLUDGE PROCESS, AN EFFECTIVE SOLUTION FOR HIGH STRENGTH WASTES by Narinder Sunner, Chris Evans, Graig Siviter and Tom Bower, Water and Environmental Management, Volume 13, Number 5, October, 1999;
UPGRADING WASTEWATER TREATMENT PLANTS BY THE USE OF BIOFILM CARRIERS, OXYGEN ADDITION AND PRE-TREATMENT IN THE SEWER NETWORK by Anette Aesoy, Hallvard Odegaard, Marius Haegh, Frode Risla and Greta Bentzen, Water Science & Technology, Vol 37, Number 9, 1998.
APPLICATION OF INVERSE FLUIDIZATION IN WASTEWATER TREATMENT: FROM LABORATORY TO FULL-SCALE BIOREACTORS, by D. G. Karamanev and L. N. Nikolov, Environmental Progress, Vol. 15, No. 3, pp 194-196, Fall 1996.
SUMMARY OF THE INVENTION
The present invention seeks to provide improved systems and methodologies for biological water treatment.
There is thus provided in accordance with a preferred embodiment of the present invention a method for retrofitting existing waste water treatment facilities having at least one existing basin. The method includes installing generally vertical partitions at spaced locations in at least one existing basin in order to divide the existing basin into a plurality of treatment stage regions, installing at least one air lift in each of the plurality of treatment stage regions, loading each treatment stage regions with a quantity of floatable porous particles, supplying waste water to at least one of the plurality of treatment stage regions and allowing the waste water, but generally not the particles, to flow from at least one of the plurality of treatment stage regions to at least another of the plurality of treatment stage regions and operating the air lift in each of the plurality of treatment stage regions to provide aerobic waste water flow therein in operative engagement with the floatable porous particles.
There is also provided in accordance with a preferred embodiment of the present invention a method for waste water treatment employing at least one basin. The method includes installing generally vertical partitions at spaced locations in at least one basin in order to divide the basin into a plurality of treatment stage regions, installing at least one air lift in each of the plurality of treatment stage regions, loading each treatment stage regions with a quantity of floatable porous particles, supplying waste water to at least one of the plurality of treatment stage regions and allowing the waste water, but generally not the particles, to flow from at least one of the plurality of treatment stage regions to at least another of the plurality of treatment stage regions and operating the air lift in each of the plurality of treatment stage regions to provide aerobic waste water flow therein in operative engagement with the floatable porous particles.
There is further provided in accordance with another preferred embodiment of the present invention a retrofitted waste water treatment apparatus. The apparatus includes at least one existing basin, generally vertical partitions located at spaced locations in the existing basin in order to divide the existing basin into a plurality of treatment stage regions, at least one air lift located in each of the plurality of treatment stage regions and a quantity of floatable porous particles loaded into each of the plurality of treatment stage regions, whereby supplying waste water to at least one of the plurality of treatment stage regions and allowing the waste water, but generally not the particles, to flow from at least one of the plurality of treatment stage regions to at least another of the plurality of treatment stage regions and operating the air lift in each of the plurality of treatment stage regions provides aerobic waste water flow therein in operative engagement with the floatable porous particles.
There is further provided in accordance with yet another preferred embodiment of the present invention a waste water treatment apparatus. The apparatus includes at least one basin, generally vertical partitions located at spaced locations in the basin in order to divide the basin into a plurality of treatment stage regions, at least one air lift located in each of the plurality of treatment stage regions and a quantity of floatable porous particles loaded into each of the plurality of treatment stage regions, whereby supplying waste water to at least one of the plurality of treatment stage regions and allowing the waste water, but generally not the particles, to flow from at least one of the plurality of treatment stage regions to at least another of the plurality of treatment stage regions and operating the air lift in each of the plurality of treatment stage regions provides aerobic waste water flow therein in operative engagement with the floatable porous particles.
Further in accordance with a preferred embodiment of the present invention at least some of the vertical partitions are spaced from a bottom of the basin in order to allow the waste water to flow thereunder between adjacent ones of the plurality of treatment stage regions.
Still further in accordance with a preferred embodiment of the present invention the air lift includes the air diffuser disposed underlying a peripheral enclosure which defines a column of water and is lifted by air diffusing upwardly from the air diffuser therethrough.
Additionally in accordance with a preferred embodiment of the present invention the peripheral enclosure includes a cylindrical enclosure. Alternatively, the peripheral enclosure includes a plurality of spaced generally vertical walls which extend between walls of the basin and are separated from the bottom of the basin.
Further in accordance with a preferred embodiment of the present invention the floatable particles include porous plastic particles having a density lower than that of pure water. Preferably, the particles have a specific gravity between 0.65 and 0.95 and have an irregular shape, whose largest dimension is generally between 4-10 mm.
Additionally in accordance with a preferred embodiment of the present invention, the particles have a total porosity exceeding 50% and have a mean pore diameter of pores, whose diameter exceeds 10 microns, of about 20 microns.
Further in accordance with a preferred embodiment of the present invention the generally vertical partitions divide the basin into between 4 and 12 process stages.
Still further in accordance with a preferred embodiment of the present invention the air lift includes a series of air lifts arranged in the multiple process stages. Preferably, the series of air lifts includes at each process stage an initial air lift assembly and at least one intermediate air lift assembly. The initial air lift assembly typically includes a upstream partition which extends downwardly from a top location above a water level in th
Levy Eytan
Shechter Ronen
Aqwise Wise Water Technologies, Ltd.
Ladas and Parry
Upton Christopher
LandOfFree
Method and apparatus for biological wastewater treatment does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for biological wastewater treatment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for biological wastewater treatment will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3062514