Typewriting machines – Means auxiliary to typewriting function – Frame – casing – or support for typewriter
Reexamination Certificate
2000-05-26
2002-04-02
Yan, Ren (Department: 2854)
Typewriting machines
Means auxiliary to typewriting function
Frame, casing, or support for typewriter
C400S693000
Reexamination Certificate
active
06364555
ABSTRACT:
FIELD OF THE INVENTION
This invention relates in general to a color proofing apparatus and method of manufacture and more particularly to alignment of a bearing hub in a print engine chassis.
BACKGROUND OF THE INVENTION
Pre-press color proofing is a procedure used by the printing industry for creating representative images of printed material. This procedure avoids the high cost and time required to produce printing plates and also avoids setting-up a high-speed, high-volume printing press to produce a representative sample of an intended image for proofing. Otherwise, in the absence of pre-press proofing, a production run may require several corrections and must be reproduced several times to satisfy customer requirements. This results in lost profits. By utilizing pre-press color proofing, time and money are saved.
A laser thermal printer having half-tone color proofing capabilities is disclosed in commonly assigned U.S. Pat. No. 5,268,708 titled “Laser Thermal Printer With An Automatic Material Supply” issued Dec. 7, 1993 in the name of R. Jack Harshbarger, et al. The Harshbarger, et al. device is capable of forming an image on a sheet of thermal print media by transferring dye from a roll of dye donor material to the thermal print media. This is achieved by applying thermal energy to the dye donor material to form the image on the thermal print media. This apparatus generally comprises a material supply assembly, a lathe bed scanning subsystem (which includes a lathe bed scanning frame, a translation drive, a translation stage member, a laser printhead, and a rotatable vacuum imaging drum), and exit transports for thermal print media and dye donor material.
The operation of the Harshbarger, et al. apparatus comprises metering a length of the thermal print media (in roll form) from a material supply assembly. The thermal print media is then measured and cut into sheet form of the required length, transported to the vacuum imaging drum, registered, and then wrapped around and secured onto the vacuum imaging drum. Next, a length of dye donor roll material is also metered out of the material supply assembly, measured and cut into sheet form of the required length. The cut sheet of dye donor roll material is then transported to and wrapped around the vacuum imaging drum, such that it is superposed in registration with the thermal print media, which at this point has already been secured to the vacuum imaging drum. The drum is rotated past the printhead and the translation drive traverses the printhead and translation stage member axially along the rotating vacuum imaging drum in coordinated motion with the rotating vacuum imaging drum. These movements combine to produce the image on the thermal print media. After the intended image has been written on the thermal print media, the dye donor material is removed from the vacuum imaging drum without disturbing the thermal print media. Additional dye donor materials are sequentially superposed with the thermal print media on the vacuum imaging drum, then imaged onto the thermal print media as previously mentioned, until the intended full-color image is completed.
Although the printer disclosed in the Harshbarger, et al. patent performs well, there is a long-felt need to reduce manufacturing costs for this type of printer and for similar types of imaging apparatus. With respect to the lathe bed scanning frame disclosed in the Harshbarger, et al. patent, the machined casting used as the frame represents significant cost relative to the overall cost of the printer. Cost factors include the design and fabrication of the molds, the casting operation, and subsequent machining needed in order to achieve the precision necessary for a lathe bed scanning engine used in a printer of this type. Castings can be complex to model, making it difficult to use tools such as finite element analysis to predict the suitability of a design. Moreover, due to shrinkage, porosity, and other manufacturing anomalies, careful mold maintenance may be required in order to obtain uniform results when casting multiple frames. In the assembly operation, each frame casting must be individually assessed for its suitability to manufacturing standards and must be individually machined. Further, castings also exhibit frequency response behavior due to resonant frequencies, which are difficult to analyze or predict. For this reason, the task of identifying and reducing vibration effects can require considerable work and experimentation. Additionally, the overall amount of time required between completion of a design and delivery of a prototype casting can be several weeks or months.
The combined weight of the imaging drum, motor and encoder components, and printhead translation assembly components, plus the inertial forces applied when starting and stopping the drum require a frame having substantial structural strength. For this reason, a sheet metal frame would not be considered to provide a solution. Alternative methods used for frame fabrication have been tried, with some success. For example, welded frame structures have been used. However, these welded structures can require significant expense in manufacture. Welded structures can be adversely affected by stress induced by the welding process, causing warping.
Other alternatives to metal castings have been used by manufacturers of machine tools. In particular, castable polymers, manufactured under a number of trade names, have been employed to provide support structures that are equivalent to castings for apparatus such as machine tool beds and optical tables. These castable polymers also provide improved performance when compared with castings, with respect to expansion and contraction due to heat and with respect to vibration damping.
Castable polymers have been employed to provide substitute structures for metal castings and weldments. One example is disclosed in U.S. Pat. No. 5,415,610 (Schutz et al.) which discloses a frame for machine tools using castable concrete to form a single casting of a bed and a vertical wall for a machine tool. U.S. Pat. No. 5,678,291 (Braun) and 5,110,283 (Bluml et al.) are just two of a number of examples in which castable polymer concrete is used as a machine tool bed or for mounting guide rails in machining environments. Castable polymers are also used in the machine tool environment for damping mechanisms, as is disclosed in U.S. Pat. No. 5,765,818 (Sabatino et al.)
Castable polymers provide a number of advantages, including the ability to mount support components of the chassis directly in the castable material when it is still soft. Various types of fasteners, tubing, or other components can be cast in place, or can even be inserted into the castable polymer before it hardens. Of particular difficulty, however, is the precision placement of support components within the castable polymer material. In order to precisely position a component within such a material used as filler in a chassis, it is necessary to employ some type of temporary fixture or jig to hold the component in place temporarily during the hardening process. This positioning problem is compounded when it is necessary to mount two or more support components that must be axially aligned with respect to each other, such as the bearing hubs that support each end of an imaging drum.
Conventional alternatives for mounting right and left bearing hubs in precise placement with respect to each other include machining. After casting, machining operations such as boring and line honing or even line boring can be employed. As disclosed in U.S. Pat. Nos. 4,451,186 (Payne), 4,979,850 (Dompe), and 4,693,642 (Mair et al.), line boring machinery and techniques are employed for engine blocks and other precision castings. Line boring equipment, as described in these patents, solves the difficult problem of boring holes on opposite side walls of a chassis or engine, where axial alignment must be within very tight tolerances. However, line boring equipment is very expensive and requires building of specialized jigs and supports.
Blish Nelson Adrian
Cone Darius N.
Eastman Kodak Company
Yan Ren
LandOfFree
Method and apparatus for bearing hub alignment in print... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for bearing hub alignment in print..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for bearing hub alignment in print... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2820207