Method and apparatus for beam switching in a wireless...

Multiplex communications – Communication over free space – Having a plurality of contiguous regions served by...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S336000, C455S562100

Reexamination Certificate

active

06751206

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
The current invention relates to wireless data communication. More particularly, the present invention relates to a novel and improved method and apparatus for high rate packet data transmission in a wireless communication system.
II. Description of the Related Art
A modern day communication system is required to support a variety of applications. One such communication system is a code division multiple access (CDMA) system which conforms to the “TIA/EIA/IS-95 Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System,” hereinafter referred to as the IS-95 standard. The CDMA system allows for voice and data communications between users over a terrestrial link. The use of CDMA techniques in a multiple access communication system is disclosed in U.S. Pat. No. 4,901,307, entitled “SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS”, and U.S. Pat. No. 5,103,459, entitled “SYSTEM AND METHOD FOR GENERATING WAVEFORMS IN A CDMA CELLULAR TELEPHONE SYSTEM,” both assigned to the assignee of the present invention and incorporated by reference herein.
In this specification, base station refers to the hardware with which the subscriber stations communicate. Cell refers to the hardware or the geographic coverage area, depending on the context in which the term is used. A sector is a partition of a cell. A sub-sector is a division of a sector. Because a sector, and a sub-sector of a CDMA system have the attributes of a cell, the teachings described in terms of cells are readily extended to sectors and sub-sectors.
In a CDMA system, communications between users are conducted through one or more base stations. A first user on one subscriber station communicates to a second user on a second subscriber station by transmitting data on a reverse link to a base station. The base station receives the data and can route the data to another base station. The data is transmitted on the forward link of the same base station, or a second base station, to the second subscriber station. The forward link refers to transmission from the base station to a subscriber station and the reverse link refers to transmission from the subscriber station to a base station. In IS-95 systems, the forward link and the reverse link are allocated separate frequencies.
The subscriber station communicates with at least one base station during a communication. CDMA subscriber stations are capable of communicating with multiple base stations simultaneously during soft handoff. Soft handoff is the process of establishing a link with a new base station before breaking the link with the previous base station. Soft handoff minimizes the probability of dropped calls. A method and system for providing a communication with a subscriber station through more than one base station during the soft handoff process are disclosed in U.S. Pat. No. 5,267,261, entitled “MOBILE ASSISTED SOFT HANDOFF IN A CDMA CELLULAR TELEPHONE SYSTEM,” assigned to the assignee of the present invention and incorporated by reference herein. Softer handoff is the process whereby the communication occurs over multiple sectors which are serviced by the same base station. The process of softer handoff is described in detail in U.S. Pat. No. 5,625,876, entitled “METHOD AND APPARATUS FOR PERFORMING HANDOFF BETWEEN SECTORS OF A COMMON BASE STATION,” assigned to the assignee of the present invention and incorporated by reference herein.
Given the growing demand for wireless data applications, the need for very efficient wireless data communication systems has become increasingly significant. The IS-95 standard is capable of transmitting data traffic and voice traffic over the forward and reverse links. A method for transmitting data traffic in code channel frames of fixed size is described in detail in U.S. Pat. No. 5,504,773, entitled “METHOD AND APPARATUS FOR THE FORMATTING OF DATA FOR TRANSMISSION,” assigned to the assignee of the present invention and incorporated by reference herein. In accordance with the IS-95 standard, the data traffic or voice traffic is partitioned into code channel frames which are 20 msec wide with data rates as high as 14.4 Kbps.
Transmission of high-rate data traffic and voice traffic over the forward and reverse links is proposed in a high-data-rate standard. In accordance with the proposed high-data-rate standard, the data traffic or voice traffic is partitioned into time slots of variable duration. A code channel frame comprises one to sixteen time slots. Beamforming techniques for decreasing interference caused by transmissions of a base station to subscriber stations in neighboring cells are described in detail in U.S. patent application Ser. No. 09/388,267, filed Sep. 1, 1999, entitled “METHOD AND APPARATUS FOR BEAMFORMING IN A WIRELESS SYSTEM,” assigned to the assignee of the present invention and incorporated by reference herein.
A significant difference between voice services and data services is the fact that voice services impose stringent and fixed delay requirements. Typically, the overall one-way delay of speech frames must be less than 100 msec. In contrast, the data delay can become a variable parameter used to optimize the efficiency of the data communication system. Specifically, more efficient error correcting coding techniques which require significantly larger delays than those that can be tolerated by voice services can be utilized. An exemplary efficient coding scheme for data is disclosed in U.S. patent application Ser. No. 08/743,688, now patented, U.S. Pat. No. 5,933,462 entitled “SOFT DECISION OUTPUT DECODER FOR DECODING CONVOLUTIONALLY ENCODED CODEWORDS,” filed Nov. 6, 1996, assigned to the assignee of the present invention, and incorporated by reference herein.
Another significant difference between voice services and data services is that voice services require a fixed and common grade of service (GOS) for all users. Typically, for digital systems providing voice services, this translates into a fixed and equal transmission rate for all users and a maximum tolerable value for the error rates of the speech frames. In contrast, for data services, the GOS can be different from user to user and can be a parameter optimized to increase the overall efficiency of the data communication system. The GOS of a data communication system is typically defined as the total delay incurred in the transfer of a predetermined amount of data, hereinafter referred to as a data packet.
Yet another significant difference between voice services and data services is that voice services require a reliable communication link which, in the exemplary CDMA communication system, is provided by soft handoff. Soft handoff results in redundant transmissions from two or more base stations to improve reliability. However, this additional reliability is not required for data transmission because the data packets received in error can be retransmitted. For data services, the transmit power used to support soft handoff can be more efficiently used for transmitting additional data.
The parameters which measure the quality and effectiveness of a data communication system are the transmission delay required to transfer a data packet and the average throughput rate of the system. Transmission delay does not have the same impact in data communication as it does for voice communication, but it is an important metric for measuring the quality of the data communication system. The average throughput rate is a measure of the efficiency of the data transmission capability of the communication system.
It is well known that in cellular systems the carrier-to-interference ratio C/I of any given user is a function of the location of the user within the coverage area. In order to maintain a given level of service, TDMA and FDMA systems resort to frequency reuse techniques, i.e. not all frequency channels and/or time slots are used in each base station. In a CDMA system, the same frequency allocation is reused in every cel

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for beam switching in a wireless... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for beam switching in a wireless..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for beam switching in a wireless... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3366358

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.