Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
2000-12-22
2004-06-29
Amsbury, Wayne (Department: 2171)
Data processing: database and file management or data structures
Database design
Data structure types
C709S248000
Reexamination Certificate
active
06757698
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of electronic data storage and data backup. Specifically, the present invention relates to a system for archiving user files, and more particularly, to a system for automatically and periodically archiving user files to a selected destination media or device across a communications network.
BACKGROUND OF THE INVENTION
In an information-driven society, data, particularly data stored in electronic form, may be extremely valuable. People in almost all industries spend tremendous amounts of time working on computers to generate documents, reports, graphics, works of art, etc. This work, stored in electronic form, may be critically important to the user who created it. Consequently, protecting that data is also critically important.
There are many types of potential disasters that may threaten a user's data. While most users envision disasters caused by flood or fire, more common scenarios are software glitches and hardware damage caused by physical or electric shock, or minor exposure to liquid. In such cases, that data or the ability to access the data may be irreparably destroyed.
One primary means of protecting data against such disasters is to make and maintain a backup copy of the data. A great virtue of electronically-stored data is the ability to quickly make a near perfect copy of the data. The copy of the data can be maintained away from the computer on which it was created, e.g., on another computer or on a removable data storage medium so that if a problem occurs with the original copy of the data, the backup copy can be used to recover the important data.
Similarly, the original copy of the data stored on the computer's hard disk may be undamaged. However, because of a software or hardware malfunction on that computer, the data may be inaccessible until the software is fixed and/or the damaged hardware is replaced. If the user cannot wait for repair, the user can use another computer and access the backup copy of the data which may be nearly as current as the inaccessible data on the hard disk. In this way, the user is able to avoid the problems that would be caused by complete lack of access to the data at a critical time.
The key to a successful backup strategy is performing backups often enough that the backup copy of important data is current (i.e., identical to the original copy) or nearly current, so as to be able to serve in place of the original copy of the data with minimal difficulty if something happens to that original copy. Also, the backup media should be reliable and preferably sized to store an entire backup copy of the data on a single piece of storage media. However, conventional backup utilities are often difficult to use and may have proprietary or incompatible formats.
Moreover, high capacity backup media, such as computer tape, requires a dedicated backup device (e.g., a tape drive). If the main system malfunctions and the data on the tapes must be accessed, the alternative or replacement computer used may not have a corresponding tape drive for reading the backup tape. The same problem may occur with any high capacity backup media. Because high capacity backup media generally require a dedicated drive, the available functioning computers to which a user may turn may not have had the necessary dedicated drive installed.
The backup copy of the data can be stored on conventional floppy disks. However, because floppies are not a high capacity data storage media, a large number of floppy disks may be required, and the backup process may consume hours of time.
Additionally, backup utilities do not generally facilitate the automatic mirroring of data between devices, especially in a flexible and user definable manner. For example, a user may have a first computer in one location such as a home and a second computer in another location such as a business. The user would like changes to certain files on the first computer to be mirrored to corresponding files stored on the second computer. In addition, perhaps, the user would like changes to files on the second computer to be mirrored to corresponding files on the first computer. To accomplish this, the user must generally remember to carry or transmit updated files back and forth between the first and second computers.
As another example, the user may have a communications management program on each of the first and second computers. Each communications management program maintains files of contacts and related information including telephone numbers. In addition, the user may also have a mobile telephone with an electronic telephone number directory stored therein. The user may want changes to the mobile telephone's directory to be mirrored to the files of the communications management programs on the first and second computers. In addition, the user may also want changes to the filed of the communications management program on either computer to be mirrored to the other computer and to the mobile telephone's directory. In the past, the user has been required to manually input, carry or transmit the updated data from one device to another.
Consequently, there is a need in the art for a system that simplifies the backup/archive process and provides adequate protection of important data. There is also a need for the backup to be made to a storage medium in a format that is compatible with other computers. Further, there is a need for the backup process to facilitate automatic mirroring of data between devices, including different computers and other types of electronic devices.
SUMMARY OF THE INVENTION
The present invention meets the needs in the art described above. Specifically, the present invention provides a system that simplifies the backup/archive process and provides adequate protection of important data. The present invention also provides a backup process with automatic mirroring of data between devices, including different computers and other types of electronic devices, via a communications network. Other novel features and advantages of the present invention may be discovered by those skilled in the art by reading this text and practicing the invention described herein.
In a preferred embodiment, the present invention may be described as a system for backing up electronic data files that includes: a host computer running a mirroring application; a connection between the host computer and the Internet; and a user interface of the mirroring application, where the user interface includes controls for specifying source data. The mirroring application monitors the source data for change and, upon detecting changes to the source data, copies the source data to a backup data storage location accessed by the host computer via the Internet. Additionally, the mirroring application, upon detecting changes to the source data, also copies the source data to a local backup data storage location.
The local backup data storage location may be a removable storage media in a removable storage media drive. Alternatively, the local backup data storage location may be a hard drive in the host computer or in a computer networked to the host computer.
Preferably, the user interface includes controls for specifying the local backup data storage location. The user interface may also specify the available storage capacity of the local backup data storage location.
Preferably, the user interface also includes schedule controls for specifying how often the mirroring application checks the source data for change and, upon detecting changes to the source data, copies the source data to the backup data storage location accessed via the Internet. The schedule controls may include controls for specifying a time interval at which the mirroring application checks the source data for change and, upon detecting changes to the source data, copies the source data to the backup data storage location accessed via the Internet. Alternatively, the schedule controls may include controls for specifying at least one day of the week and time of day at w
Davidson Troy
McBride Stephen Larry
Polson Russell Glen
Amsbury Wayne
Hagler James T.
Iomega Corporation
LandOfFree
Method and apparatus for automatically synchronizing data... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for automatically synchronizing data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for automatically synchronizing data... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3365561