Method and apparatus for automated, in situ material...

Optics: measuring and testing – With plural diverse test or art

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S237400, C356S417000, C250S458100

Reexamination Certificate

active

06831734

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the manufacture of semiconductor wafers prepared by a method including applying a photo-resist layer, exposing the layer, and stripping the layer from the semiconductor wafer. More particularly, this invention pertains to a method for inspecting semiconductor wafers or other substrates to determine the presence of residual photo-resist material on the semiconductor wafer surface.
2. State of the Art
Semiconductor chips are produced in a multi-step process by which a plurality of identical electronic circuits is typically formed on a semiconductor substrate, such as a silicon wafer. The semiconductor substrate is then subdivided (diced) into individual chips which are further processed into semiconductor devices.
The electronic circuits are generally patterned into a semiconductor wafer by lithography. In this process, a resist material is coated onto the semiconductor wafer surface. As disclosed in commonly owned U.S. Pat. No. 5,350,236, issued Sep. 27, 1994, hereby incorporated herein by reference, the application of a material on a semiconductor substrate can be monitored by measuring light reflected from a surface of the semiconductor substrate.
After the resist material has been coated on the semiconductor wafer surface, it is selectively exposed to a radiation source, such as by the passage of radiation (i.e., light, e-beam, or X-rays) through a mask having the desired pattern. Some portions of the resist receive a high dosage of radiation while other portions receive little or no radiation, resulting in a difference in solubility from the resist portions. In a subsequent development step, a developer removes or etches portions of the resist coating from the semiconductor substrate at a rate higher than other portions. The selective removal results in a resist pattern which will become the electronic circuit pattern on the semiconductor substrate. Precision in the development time is critical for achieving complete removal of resist from some portions while leaving other portions substantially intact. Both insufficient development and excessive development will result in a lack of differentiation, forming a defective electronic circuit pattern on the semiconductor substrate. In addition, where the width of a conductor line(s) in the electronic circuit is critical, inadequate development results in an overly narrow line, and excessive development produces an overly wide line. Thus, precise endpoint detection (i.e., the moment at which precise development occurs) is a requirement for proper development.
Following the removal of the portions of the photo-resist material in the development process, the semiconductor wafer is subjected to further processing steps which may include doping, etching, and/or deposition of conductive materials in unprotected areas, i.e., areas devoid of photo-resist material. After one or more of these processing steps, the semiconductor wafer is subjected to a stripping step to remove the photo-resist material remaining on the semiconductor wafer.
After the removal of the photo-resist material, a subsequent processing step may include heating the semiconductor wafer in a diffusion furnace or applying a layer of material with a chemical vapor deposition system. Occasionally, a semiconductor wafer is inadvertently passed to a thermal furnace or vapor deposition system without removal or with only partial removal of the photo-resist material. The resulting damage to the processing equipment may be severe. For example, furnace diffusion tubes are irreparably damaged by vaporized hydrocarbons and carbon from the photo-resist material and, thus, the furnace diffusion tubes must be replaced. The replacement equipment and/or the downtime to repair the processing equipment is usually very costly.
Furthermore, the photo-resist carrying semiconductor wafer and one or more subsequent semiconductor wafers entering the processing equipment prior to shutdown of the equipment are usually also contaminated and must be discarded. At a late stage of manufacture, a semiconductor wafer may have a value between about $10,000 and $20,000. Thus, even an occasional loss is significant.
One method used in the industry to detect such residual photo-resist material is manual inspection with a microscope. However, manual inspection of semiconductor wafers to detect photo-resist materials has not been sufficiently effective. First, photo-resist is typically difficult to see using a conventional white light microscope, and even an experienced microscopist may inadvertently miss photo-resist on a wafer. Secondly, since manual inspection is laborious and time-consuming, it is generally not cost-effective to manually inspect more than a very small number of the semiconductor wafers (usually less than 10%). Thus, unstripped semiconductor wafers may still be missed by manual inspection.
Accordingly, an object of the present invention is to provide an improved method for rapid automated detection of resist material on semiconductor wafers in order to reduce process downtime, material wastage, maintenance/repair expenses and production costs.
SUMMARY OF THE INVENTION
The present invention is an automated method and apparatus for determining the presence or absence of a photo-resist material on the surface of a semiconductor substrate by the detection of fluorescence, reflection, or absorption of light by the photo-resist material.
Photo-resist materials are generally organic polymers, such as phenol-formaldehyde, polyisoprene, poly-methyl methacrylate, poly-methyl isopropenyl ketone, poly-butene-1-sulfone, poly-trifuluorethyl chloroacrylate, and the like. Organic substances can generally fluoresce (luminescence that is caused by the absorption of radiation at one wavelength followed by nearly immediate re-radiation at a different wavelength) or will absorb or reflect light. Fluorescence of the material at a particular wavelength, or reflection/absorption by the material of light at a given wavelength, may be detected and measured, provided the material differs from the underlying semiconductor substrate in fluorescence or reflection/absorption at a selected wavelength or wavelengths. For example, a positive photo-resist generally fluoresces red or red-orange and a negative photo-resist generally fluoresces yellow.
In a particular application of the invention, the presence of photo-resist material on a semiconductor wafer surface may be rapidly and automatically determined, recorded, and used to drive an apparatus which separates semiconductor wafers based on the presence or absence (or quantity) of the photo-resist material. Thus, semiconductor wafers which have been incompletely stripped of photo-resist material (or not stripped at all) may be automatically detected and culled from a manufacture line of fully stripped semiconductor wafers and reworked. Thus, contamination of downstream processes by unstripped semiconductor wafers is avoided.
In this invention, the semiconductor wafer is irradiated with light which may be monochromatic, multichromatic, or white. In one version, the intensity of generated fluorescence peculiar to the photo-resist material at a given wavelength is measured. In another version, the intensity is measured at a wavelength which is largely or essentially fully absorbed by the photo-resist material. In a further variation, the intensity of reflected light is measured at a particular wavelength highly reflected by the photo-resist material but absorbed by the substrate.
The intensity of fluoresced or reflected light is measured by a sensing apparatus and the result is put to a logic circuit, e.g., a computer. The result may be recorded and used for a decision making step and control of a robotic device. The robot performs the semiconductor wafer handling tasks, such as transferring the semiconductor wafers from a semiconductor wafer cassette to an inspection stage, and transferring the inspected semiconductor wafers to a destination dependent upon the test results.
A per

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for automated, in situ material... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for automated, in situ material..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for automated, in situ material... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3313978

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.