Method and apparatus for automated design of complex...

Data processing: structural design – modeling – simulation – and em – Simulating nonelectrical device or system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C703S002000, C703S007000, C703S014000, C703S022000, C716S030000, C716S030000

Reexamination Certificate

active

06360191

ABSTRACT:

FIELD OF THE INVENTION
The field of the invention is the automated design of complex structures, such as electrical circuits; more particularly, the present invention relates to designing complex structures, such as electrical circuits, using computer-implemented genetic algorithms.
BACKGROUND OF THE INVENTION
The automated design of complex structures that satisfy a designer's requirements is a challenging task that is ordinarily thought to require human intelligence.
Electrical engineers are often called upon to design circuits that satisfy certain design goals or requirements. Electrical circuits consist of a wide variety of different types of components, including resistors, capacitors, inductors, diodes, transistors, transformers, and energy sources. The individual components of an electrical circuit are arranged in a particular “topology” to form a circuit.
Various types of components may be inserted at each location within the circuit's topological arrangement. In addition, each component is further specified (“sized”) by a set of component values (typically numerical). A complete specification of an electrical circuit includes its topology, the choice of component types to be inserted at each location within the topology, and the sizing of all of its components.
In designing a circuit, the goal is to attain certain desired values of one or more observable quantities (e.g., an observed pattern of voltages at certain times or at certain frequencies at a certain probe point in the circuit). Often there are one or more additional considerations (e.g., number of components in the circuit, cost of the components, etc.).
This application is a continuation of U.S. patent application Ser. No. 08/603,648, entitled “Method and Apparatus for Automated Design of Complex Structures using Genetic Programming,” filed Feb. 20, 1996.
Similarly, mechanical and civil engineers are often called upon to design physical structures that satisfy certain design goals or requirements. Physical structures, like electrical circuits, consist of a variety of different types of components. These individual components may be arranged in a particular topology to form the overall complex physical structure. Various types of components may be inserted at each location within the topological arrangement. Each component in the overall structure may be further specified by a set of component values (typically numerical). For example, a mechanical engineer may want to design as truss consisting of components such as rigid load-supporting metallic beams and load-supporting flexible cables. The design goals may be to support a particular load or loads and of satisfying a requirement that the stress on each bar or cable is not so great as to cause the rigid bar or flexible cable to break. Finally, there may be an additional design goal that the entire physical structure meets some cost requirement, such as minimizing the total weight of the material contained in the truss. In order to design the desired truss, the designer must create an appropriate topological arrangement of components (i.e., the number of components and how they are joined), choose component types (i.e., rigid beams or flexible cables) to insert into the topological arrangement, and choose appropriate numerical values (i.e., their thickness) for each of the components.
Both the above electrical and mechanical design problems and many other design problems from many other fields share the common feature of requiring the designer to create an appropriate topological arrangement of components, to choose component types to insert into the topological arrangement, and to choose appropriate numerical values for each of the components in the overall complex structure.
The Natural Selection Process In Nature
In nature, biological entities exhibit a wide variety of structures that survive and prosper in various environments. Nature's methods for designing biological entities to meet the requirements of their natural environment provides a useful model for designing complex structures.
Most structures and behaviors in living things are the consequence of the actions and interactions of proteins. In fact, proteins are responsible for such a wide variety of biological structures and behaviors that it can be said that the structure and functions of living organisms are primarily determined by proteins. Proteins are polypeptide molecules composed of sequences of amino acids. There are 20 amino acid residues (denoted by the letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y) from which protein molecules are constructed. Protein molecules are, in turn, made up of an average of about 300 such amino acid residues (with large proteins containing thousands of amino acid residues). Simple bacteria sustain life with as few as 1,800 different proteins while humans have an estimated 100,000 proteins.
Proteins are manufactured in accordance with instructions and information contained in the chromosomal DNA of the organism. DNA (deoxyribonucleic acid) is a long thread-like biological molecule that has the ability to carry hereditary information and the ability to serve as a model for the production of replicas of itself. All known life forms on this planet (including bacteria, fungi, plants, animals, and humans) are based on the DNA molecule. In nature, a gene is the basic functional unit by which hereditary information is passed from parents to offspring. Genes appear at particular places along molecules of deoxyribonucleic acid (DNA).
The so-called “genetic code” involving the DNA molecule consists of long strings (sequences) of 4 possible values that can appear at the various loci along the DNA molecule. For DNA, the 4 possible values refer to 4 “bases” named adenine, guanine, cytosine, and thymine (usually abbreviated as A, G, C, and T, respectively). Thus, the “genetic code” in DNA consists of long strings such as CTCGACGGT. When living cells reproduce, the genetic code in DNA is read. Sub-sequences (called “codons”) consisting of 3 DNA bases specify one of 20 amino acids. Thus, the genetic code is used to specify and control the building of proteins from the information and instructions contained in the DNA molecule.
Organisms consist of living cells, each containing thousands of interacting proteins, spend their lives attempting to deal with their environment. Some organisms do better than others in dealing with their environment. In particular, some organisms survive to the age of reproduction and can then thereby pass on their genetic make-up (i.e., their genes) to their offspring. Natural selection is the process by which organisms whose traits facilitate survival to the age of reproduction pass on all or part of their genetic make-up to offspring (Darwin 1859). Over a period of time and many generations, the population as a whole evolves so that the chromosome strings in the individuals in the surviving population perpetuate traits that contribute to the survival of the organism in its environment. That is, the natural selection process tends to evolve, over a period of time, structures that are designed so as to deal effectively with their environment.
Genetic Algorithms
A genetic algorithm provides a method of improving a given set of objects. The processes of natural selection and survival of the fittest provide a theoretical base for the genetic algorithm.
Adaptation in Artificial and Natural Systems
, by Professor John H. Holland (1975), summarizes and presents an overall mathematical theory of adaptation for both natural and artificial systems. A key part of Holland's book described a “genetic algorithm” patterned after nature's methods for biological adaptation. In later work, Holland (1986) described a classifier system that employed a genetic algorithm and a bucket brigade algorithm to solve problems. U.S. Pat. No. 4,697,242 (Holland et al.) and U.S. Pat. No. 4,881,178 (Holland et al.) describe classifier systems that use fixed length binary strings in conjunction with a genetic algorithm.
Genetic Prog

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for automated design of complex... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for automated design of complex..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for automated design of complex... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2835846

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.