Pulse or digital communications – Spread spectrum – Time hopping
Reexamination Certificate
2000-08-15
2004-09-07
Tran, Khai (Department: 2631)
Pulse or digital communications
Spread spectrum
Time hopping
Reexamination Certificate
active
06788730
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to impulse transmission systems and, more particularly, to a method of applying codes for specifying characteristics of pulses in an impulse transmission system.
2. Related Art
As the availability of communication bandwidth in the increasingly crowded frequency spectrum is becoming a scarce and valuable commodity, Time Modulated Ultra Wideband (TM-UWB) technology provides an excellent alternative for offering significant communication bandwidth, particularly, for various wireless communications applications. Because TM-UWB communication systems are based on communicating extremely short-duration pulses (e.g., pico-seconds in duration), such systems are also known as impulse radio systems. Impulse radio systems were first described in a series of patents, including U.S. Pat. No. 4,641,317 (issued Feb. 3, 1987), U.S. Pat. No. 4,813,057 (issued Mar. 14, 1989), U.S. Pat. No. 4,979,186 (issued Dec. 18, 1990), and U.S. Pat. No. 5,363,057 (issued Nov. 8, 1994) to Larry W. Fullerton, and U.S. Pat. No. 5,677,927 (issued Oct. 14, 1997), U.S. Pat. No. 5,687,169 (issued Nov. 11, 1997), and U.S. Pat. No. 5,832,035 (issued Nov. 3, 1998) to Larry W. Fullerton, et al. These patents are incorporated herein by reference.
Multiple access impulse radio systems are radically different from conventional Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) systems. Unlike such systems, which use continuous sinusoidal waveforms for transmitting information, a conventional impulse radio transmitter emits a low power electromagnetic train of short pulses, which are shaped to approach a Gaussian monocycle. As a result, the impulse radio transmitter uses very little power to generate noise-like communication signals for use in multiple-access communications, radar and positioning applications, among other things. In the multi-access communication applications, the impulse radio systems depend, in part, on processing gain to achieve rejection of unwanted signals. Because of the extremely high achievable processing gains, the impulse radio systems are relatively immune to unwanted signals and interference, which limit the performance of systems that use continuous sinusoidal waveforms. The high processing gains of the impulse radio systems also provide much higher dynamic ranges than those commonly achieved by the processing gains of other known spread-spectrum systems.
Impulse radio communication systems transmit and receive the pulses at precisely controlled time intervals, in accordance with a time-hopping code. As such, the time-hopping code defines a communication channel that can be considered as a unidirectional data path for communicating information at high speed. In order to communicate the information over such channels, typical impulse radio transmitters use position modulation, which is a form of time modulation, to position the pulses in time, based on instantaneous samples of a modulating information signal. The modulating information signal may for example be a multi-state information signal, such as a binary signal. Under this arrangement, a modulator varies relative positions of a plurality of pulses on a pulse-by-pulse basis, in accordance with the modulating information signal and a specific time-hopping code that defines the communication channel.
In applications where the modulating information signal is a binary information signal, each binary state may modulate the time position of more than one pulse to generate a modulated, coded timing signal that comprises a train of identically shaped pulses that represent a single data bit. The impulse transmitter applies the generated pulses to a specified transmission medium, via a coupler, such as an antenna, which electromagnetically radiates the pulses for reception by an impulse radio receiver. The impulse radio receiver typically includes a single direct conversion stage. Using a correlator, the conversion stage coherently converts the received pulses to a baseband signal, based on a priori knowledge of the time-hopping code. Because of the correlation properties of the selected time-hopping codes, the correlator integrates the desired received pulses coherently, while the undesired noise signals are integrated non-coherently such that by comparing the coherent and non-coherent integration results, the impulse receiver can recover the communicated information.
Conventional spread-spectrum code division multiple access (SS-CDMA) techniques accommodate multiple users by permitting them to use the same frequency bandwidth at the same time. Direct sequence CDMA systems employ pseudo-noise (PN) codewords generated at a transmitter to “spread” the bandwidth occupied by transmitted data beyond the minimum required by the data. The conventional SS-CDMA systems employ a family of orthogonal or quasi-orthogonal spreading codes, with a pilot spreading code sequence synchronized to the family of codes. Each user is assigned one of the spreading codes as a spreading function. One such spread-spectrum system is described in U.S. Pat. No. 4,901,307 entitled SPREAD-SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS by Gilhousen et al.
Unlike direct sequence spread-spectrum systems, the time-hopping code for impulse radio communications is not necessary for energy spreading, because the monocycle pulses themselves have an inherently wide bandwidth. Instead, the impulse radio systems use the time-hoping codes for channelization, energy smoothing in the frequency domain, and interference suppression. The time-hoping code defines a relative position of each pulse within a group of pulses, or pulse train, such that the combination of pulse positions defines the communications channel. In order to convey information on such communication channel, each state of a multi-state information signal varies a relative pulse position by a predefined time shift such that a modulated, coded timing signal is generated comprising a train of pulses, each with timing corresponding to the combination of the time position coding and the multi-state modulation.
In one conventional binary approach, pulses are time-modulated forward or backward about a nominal position. More specifically, each pulse is time modulated by adjusting its position within a time frame to one of two or more possible times. For example, in order to send a “0” binary bit during the time frame, the pulse may be offset from a nominal position of the time frame by about −50 pico-seconds. For a “1” binary state, the pulse may be offset from the nominal position by about +50 pico-seconds. Conventional coders that generate the time-hoping code do so in response to a periodic timing signal that corresponds to the data-rate of the multi-state information signal. The data rate of the impulse radio transmission may for example be a fraction of a periodic timing signal that is used as a time base or time reference.
In practice, decoding errors are minimized using distinctive time-hopping codes with suitable autocorrelation and cross-correlation properties. The cross-correlation between any two time-hopping codes should be low for minimal interference between multiple users in a communications system or between multiple target reflections in radar and positioning applications. At the same time, the autocorrelation property of a time-hoping code should be steeply peaked, with small side-lobes. Maximally peaked time-hopping code autocorrelation yields optimal acquisition and synchronization properties for communications, radar and positioning applications.
Various coding schemes with known correlation characteristics are available. For example, algebraic codes, Quadratic Congruential (QC) codes, Hyperbolic Congruential (HC) codes and optical codes have been suggested in the past for coding in impulse radio systems. Generally, based on known assumptions, the coding schemes guarantee a maximum number of pulse coincidences,
Fullerton Larry W.
Pendergrass Marcus H.
Richards James L.
Roberts Mark D.
Babayi Robert
Time Domain Corporation
Tran Khai
Venable LLP
LandOfFree
Method and apparatus for applying codes having pre-defined... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for applying codes having pre-defined..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for applying codes having pre-defined... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3261546