Surgery – Diagnostic testing – Measuring electrical impedance or conductance of body portion
Reexamination Certificate
1998-12-16
2001-01-30
Schaetzle, Kennedy (Department: 3737)
Surgery
Diagnostic testing
Measuring electrical impedance or conductance of body portion
C607S002000, C607S059000
Reexamination Certificate
active
06181961
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to multi-channel nerve integrity monitoring, and more particularly to the patient connection electrodes, their transmission lines and a manner by which these components may communicate to the main monitoring unit to actuate automatic setup functions.
2. Description of Related Art
Despite advances in diagnostic, microsurgical and neurological techniques that enable a more positive anatomical identification of facial nerves, following surgical procedures to the head and neck, such as an acoustic neuroma resection, there is a significant risk of a patient losing facial nerve function. Because of the very delicate nature of these facial nerves, even the best and most experienced surgeons using the most sophisticated equipment known, encounter a considerable hazard that one or several nerves will be bruised, stretched or severed, during an operation.
However, studies have shown that preservation of facial nerves during an acoustic neuroma resection, for example, may be enhanced by the use of intraoperative electrical stimulation to assist in locating nerves. Broadly stated, the locating procedure, also known as nerve integrity monitoring, involves inserting sensing or recording electrodes directly within the cranial muscles innervated or controlled by the nerve of interest. Such an exemplary monitoring electrode is disclosed in U.S. Pat. No. 5,161,533 to Prass et al., which is incorporated herein by reference in its entirety.
One method of nerve localization involves the application of electrical stimulation near the area where the subject nerve is believed to be located. If the stimulation probe contacts or is located in the area reasonably close to the nerve, the stimulation signal applied to the nerve is transmitted through the nerve to excite the related muscle. Excitement of the muscle causes an electrical impulse to be generated within the muscle which is then transferred to the recording electrodes, thereby providing an indication to the surgeon as to the location of the nerve. Stimulation is accomplished using handheld monopolar or bipolar probes, such as the Electrical Stimulus Probe described in U.S. Pat. No. 4,892,105 to Prass, which is incorporated herein by reference in its entirety.
The Electrical Stimulus Probe (now known as the “Prass Flush-Tip Monopolar Probe”) is insulated up to the distal tip to minimize current shunting through undesired paths. Another example of a bipolar probe is described in the U.S. Provisional Patent Application Ser. No. 60/096,243, entitled “Bipolar Electrical Stimulus Probe”, filed Aug. 12, 1998, which is incorporated herein by reference in its entirety.
Another method of nerve localization involves the mechanical stimulation of the nerve of interest by various dissecting instruments. Direct physical manipulation of a motor nerve may cause the nerve to conduct a nerve impulse to its associated musculature. If those muscles are being monitored using a nerve integrity monitoring instrument, the surgeon will hear an acoustic representation of the muscle response in close temporal relationship to the antecedent mechanical stimulation. This will allow the nerve of interest to be roughly localized at the contact surface of the dissecting instrument.
Prior art nerve integrity monitoring instruments (such as the Xomed® NIM-2® XL Nerve Integrity Monitor) have proven to be effective for performing the basic functions associated with nerve integrity monitoring, such as recording Electromyogram (EMG) activity from muscles innervated by an affected nerve and alerting a surgeon when the affected nerve is activated by application of a stimulus signal. However, these nerve integrity monitoring instruments have significant limitations for some surgical applications and in some operating room environments, as discussed below.
For example, a significant limitation in the majority of prior art nerve integrity monitoring devices is the availability of only two channels for monitoring of EMG activity. This two channels monitoring capability provides a limited ability to monitor multiple nerves or multiple branches of single nerves. In addition, a limited number of channels does not allow for redundancy in the event of electrode failure.
In some cases, such as with monitoring the facial nerve during the performance of parotidectomy, monitoring must be performed from each of four major branches of the facial nerve. Alternatively, procedures involving the more proximal (closer to the brainstem origin) portion of the facial nerve may be effectively monitored by a single channel, in that the nerve exhibits no topographical organization in that location. With only two channels available, there is also limited ability to distinguish whether recorded signal events represent artifacts or EMG responses, based upon their distribution among “intelligent” and “non-intelligent” electrodes, as described in U.S. patent application Ser. No. 09/213,015, filed on Dec. 16, 1998. That is, true or important EMG signals provoked by surgical manipulations distribute “intelligently” only to muscles supplied by the nerve of interest. In contrast, electrical artifacts distribute “nonintelligently” to all proximate electrodes within an electrical or electromagnetic field. Thus a multi-channel recording capability allows the user to distinguish artifacts and EMG signal events on the basis of such distribution.
Another advantage of multi-channel recording is that, with the availability of some redundancy, different recording strategies may be used for recording signals from the muscles supplied by a single nerve of interest, in order to take advantage of their respective advantages and minimize their inherent disadvantages. The most commonly used recording method for intraoperative nerve integrity monitoring involves intramuscular placement of two closely spaced electrodes. The use of intramuscular electrodes in close bipolar arrangement (as described in U.S. Pat. No. 5,161,533) is preferred in order to obtain adequate spatial selectivity and maintenance of high common mode rejection characteristics in the signal conditioning pathway for reduced interference by electromagnetic artifacts. Such electrode configurations yield a compressed dynamic range of electrical voltage observed between the paired electrodes. For example, if it is physically situated near one of the electrodes, a single motor unit (activation of a single nerve fiber) may cause an adequate voltage deflection to be heard as a clear signal spike or to exceed a predetermined voltage threshold. Moreover, with close electrode spacing and bipolar amplification, recording of larger responses is frequently associated with internal signal cancellation, which significantly reduces the amplitude of the observed electrical signal. The resultant compressed dynamic range is advantageous for supplying direct or raw EMG signal feedback to the operating surgeon, in that both large and small signal events may be clearly and comfortably heard at one volume setting. However, the method offers a limited ability to fractionate responses based upon their overall magnitude.
For quantitative measurements of EMG response amplitudes, a preferential recording method involves the use of surface electrodes in a monopolar arrangement, with an active electrode placed over a suitable muscle, supplied by the nerve of interest, and the other electrode placed at a relative distance away in an electrically neutral site. The active electrode summates muscle activity over a greater or more representative area than intramuscular electrodes and the absence of a simultaneous signal in the inactive (“indifferent reference”) electrode eliminates unpredictable signal cancellation seen in bipolar recording where both electrodes in a pair detect the same signal from different perspectives. Measurement of the response amplitude using this recording method provides an excellent representative measure of relative magnitude of muscle activation. However, the monopolar (“indifferent reference”) arr
Prass, Jr. Ronald E.
Schaetzle Kennedy
LandOfFree
Method and apparatus for an automatic setup of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for an automatic setup of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for an automatic setup of a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2529238