Method and apparatus for alignment of multiple beam paths in...

Optics: measuring and testing – By dispersed light spectroscopy – With raman type light scattering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S399000

Reexamination Certificate

active

06661509

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains generally to the field of microscopic spectroscopy such as Raman spectroscopy.
BACKGROUND OF THE INVENTION
When illuminating light, such as a laser beam, is incident upon a sample material, molecular bonds in the material will be excited by the incident light and will emit radiation which can be detected as scattered light. The Raleigh component of the scattered light corresponds to the light emitted when the molecule relaxes from the excited state to the ground state. Infrequently, the molecule will relax to a different vibrational or rotational level in the ground state. This produces Raman scattering components at Stokes and Anti-Stokes frequencies. A sample composed of multiple molecular species will produce a spectrum of such Raman scattering. The Raman scattering components can be detected and analyzed to help determine the composition of the sample. Various apparatus have been developed for analyzing Raman spectra including Raman microscopes in which a very small area on a sample can be analyzed to determine characteristics of the composition of the sample at that area. In a typical Raman microscope, narrow band or monochromatic illuminating light, such as from a laser, is passed along a beam path through the objective lens of the microscope where it is focussed at a focal point on a specimen. The Raman scattering from the sample collected by the microscope objective is passed back on a beam path to a spectrograph which typically separates the Raman scattering radiation by wavelength and detects it. Optical elements are typically included in the excitation beam path and the returning Raman radiation beam path to separate the excitation light from the Raman scattering light and to filter out the Raleigh light from the beam directed to the spectrograph. The microscope may also include a wide field illumination beam path in which light from the microscope is passed up on a beam path to a position where it can be viewed directly by an operator or detected by a video camera for display to an operator.
In using a Raman microscope of this type, the operator will generally view the specimen through the microscope to select a small area in the specimen to be analyzed, generally by aligning the desired area to be analyzed in the center of the microscope visual field, typically with the aid of cross hairs or other indicia. The intention is that the illuminating light beam path will have its axis aligned with the visual beam path so that the illuminating light will be focussed onto the spot in the specimen that was targeted by the operator using the microscope. However, if the illuminating light beam is not, in fact, aligned with the axis of the visual microscope beam path, the illuminating light will impinge on the sample at a different position, leading to potentially erroneous data concerning the composition of the sample. In addition, if the returning beam path which includes the Raman scattering radiation is not properly aligned with the aperture of the spectrograph, the intensity of the (already very weak) Raman scattering radiation received by the spectrograph will be reduced. This loss of signal power can give rise to corruption of the spectrographic data by noise and a reduction of the full potential of the spectroscopic microscope to obtain information concerning the composition of the sample.
All Raman microscope systems are subject to minor alignment drift over time. These drifts can be caused, for example, by environmental changes due to temperature fluctuations and external vibration, and by normal wear of components occurring during operation. Over time, the performance of the Raman microscope system degrades and the misalignments must be corrected by periodic maintenance procedures. Such maintenance is frequently difficult because of the complexity of simultaneously aligning the various beam paths, and generally requires trained maintenance personnel. This maintenance is thus costly both because of the direct expense associated with the maintenance procedures and because of the down time of the microscope during the maintenance procedures.
SUMMARY OF THE INVENTION
In accordance with the present invention, alignment of the multiple beam paths in a spectrographic microscope such as a Raman microscope is carried out rapidly and efficiently, without the need for trained maintenance personnel, and with minimal operator involvement. The alignment procedure may be carried out under software control by the microscope system computer. Because the alignment process is quickly and easily carried out, realignment can be performed much more frequently with minimal instrument down time, allowing the instrument to be maintained at peak performance levels.
In carrying out the invention, the operator of the microscope uses the visual microscope to position an aperture at an intended focal point of the microscope. This aperture can comprise an entrance aperture for a detector, an exit aperture for a source, or both. After the operator has fixed the aperture at the intended focal point, the spectroscopic microscope system may then be operated to either detect light using the spectrographic detector that exits from the aperture or to project illuminating light through the microscope to be focussed at the aperture and detected. The illuminating light beam path may then be adjusted to maximize the intensity of the light passed through the aperture and detected, and the return beam path leading to the spectrograph may be adjusted to maximize the light exiting from the aperture that is detected by the spectrograph. The maximization of the detected light in the illuminating beam path ensures that the illuminating beam is maximally aligned to focus on the intended focal point, whereas maximization of the detected light in the return beam path will result in the maximum return of Raman scattered light from a specimen that emanates from the focal point of a sample mounted on the microscope.
An alignment instrument that may be utilized in accordance with the invention comprises a housing having a plate with a spatially limited aperture therein, e.g., a pinhole aperture. A light source is mounted within the housing and is selectively activatable to project light out of the housing through the aperture. A light detector is also mounted in the housing to detect light originating outside the housing that passes through the aperture. The detector provides an output signal which corresponds to the intensity of the detected light. The alignment instrument is preferably formed so that it is readily mountable on the stage of the microscope, which can be adjusted until the operator, using the visual system of the microscope, observes the aperture of the alignment instrument located at the desired focal point of the microscope objective lens. Indicia may be provided in the microscope in a conventional manner to help locate the focal point. The alignment instrument may then be used without moving it from that position to project light out from the aperture to be detected by the spectrograph detector for maximization of the return beam path and, separately, to detect light from the illuminating beam that is focussed onto the focal point and passed through the aperture to allow adjustment of the illuminating beam to properly align it.
In the present invention, means are preferably provided in the illumination beam path to adjust the axis of the beam to allow it to be aligned to the aperture of the alignment instrument. Similarly, adjustment means are preferably provided in the return beam path to allow adjustment of the axis of the return beam to best fit the return beam to the input aperture of the spectrograph. A preferred structure for such adjustment means includes a pair of sequential lenses in the beam path which are adjustable relative to one another in two dimensions. Preferably, the pair of lenses have focal lengths of equal magnitude but opposite sign. One lens may be fixed and simply compensates for the other to produce a system with negligible optic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for alignment of multiple beam paths in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for alignment of multiple beam paths in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for alignment of multiple beam paths in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3104490

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.