Method and apparatus for accurate endpointing of speech in...

Data processing: speech signal processing – linguistics – language – Speech signal processing – Recognition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C704S233000, C704S251000, C704S253000, C704S254000

Reexamination Certificate

active

06324509

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention pertains generally to the field of communications, and more specifically to endpointing of speech in the presence of noise.
II. Background
Voice recognition (VR) represents one of the most important techniques to endow a machine with simulated intelligence to recognize user or user-voiced commands and to facilitate human interface with the machine. VR also represents a key technique for human speech understanding. Systems that employ techniques to recover a linguistic message from an acoustic speech signal are called voice recognizers. A voice recognizer typically comprises an acoustic processor, which extracts a sequence of information-bearing features, or vectors, necessary to achieve VR of the incoming raw speech, and a word decoder, which decodes the sequence of features, or vectors, to yield a meaningful and desired output format such as a sequence of linguistic words corresponding to the input utterance. To increase the performance of a given system, training is required to equip the system with valid parameters. In other words, the system needs to learn before it can function optimally.
The acoustic processor represents a front-end speech analysis subsystem in a voice recognizer. In response to an input speech signal, the acoustic processor provides an appropriate representation to characterize the time-varying speech signal. The acoustic processor should discard irrelevant information such as background noise, channel distortion, speaker characteristics, and manner of speaking. Efficient acoustic processing furnishes voice recognizers with enhanced acoustic discrimination power. To this end, a useful characteristic to be analyzed is the short time spectral envelope. Two commonly used spectral analysis techniques for characterizing the short time spectral envelope are linear predictive coding (LPC) and filter-bank-based spectral modeling. Exemplary LPC techniques are described in U.S. Pat. No. 5,414,796, which is assigned to the assignee of the present invention and fully incorporated herein by reference, and L. B. Rabiner & R. W. Schafer,
Digital of Speech Signals
396-453 (1978), which is also fully incorporated herein by reference.
The use of VR (also commonly referred to as speech recognition) is becoming increasingly important for safety reasons. For example, VR may be used to replace the manual task of pushing buttons on a wireless telephone keypad. This is especially important when a user is initiating a telephone call while driving a car. When using a phone without VR, the driver must remove one hand from the steering wheel and look at the phone keypad while pushing the buttons to dial the call These acts increase the likelihood of a car accident. A speech-enabled phone (i.e., a phone designed for speech recognition) would allow the driver to place telephone calls while continuously watching the road. And a hands-free car-kit system would additionally permit the driver to maintain both hands on the steering wheel during call initiation.
Speech recognition devices are classified as either speaker-dependent or speaker-independent devices. Speaker-independent devices are capable of accepting voice commands from any user. Speaker-dependent devices, which are more common, are trained to recognize commands from particular users. A speaker-dependent VR device typically operates in two phases, a training phase and a recognition phase. In the training phase, the VR system prompts the user to speak each of the words in the system's vocabulary once or twice so the system can learn the characteristics of the user's speech for these particular words or phrases. Alternatively, for a phonetic VR device, training is accomplished by reading one or more brief articles specifically scripted to cover all of the phonemes in the language. An exemplary vocabulary for a hands-free car kit might include the digits on the keypad; the keywords “call,” “send,” “dial,” “cancel,” “clear,” “add,” “delete,” “history,” “program,” “yes,” and “no”; and the names of a predefined number of commonly called coworkers, friends, or family members. Once training is complete, the user can initiate calls in the recognition phase by speaking the trained keywords. For example, if the name “John” were one of the trained names, the user could initiate a call to John by saying the phrase “Call John.” The VR system would recognize the words “Call” and “John,” and would dial the number that the user had previously entered as John's telephone number.
To accurately capture voiced utterances for recognition, speech-enabled products typically use an endpoint detector to establish the starting and ending points of the utterance. In conventional VR devices, the endpoint detector relies upon a single signal-to-noise-ratio (SNR) threshold to determine the endpoints of the utterance. Such conventional VR devices are described in 2
IEEE Trans. on Speech and Audio Processing, A Robust Algorithm for Word Boundary Detection in the Presence of Noise
, Jean-Claude Junqua et al., July 1994) and
TIA/EIA Interim Standard IS
-733 2-35 to 2-50 (March 1998). If the SNR threshold is set too low, however, the VR device becomes too sensitive to background noise, which can trigger the endpoint detector, thereby causing mistakes in recognition. Conversely, if the threshold is set too high, the VR device becomes susceptible to missing weak consonants at the beginnings and endpoints of utterances. Thus, there is a need for a VR device that uses multiple, adaptive SNR thresholds to accurately detect the endpoints of speech in the presence of background noise.
SUMMARY OF THE INVENTION
The present invention is directed to a VR device that uses multiple, adaptive SNR thresholds to accurately detect the endpoints of speech in the presence of background noise. Accordingly, in one aspect of the invention, a device for detecting endpoints of an utterance advantageously includes a processor; and a software module executable by the processor to compare an utterance with a first threshold value to determine a first starting point and a first ending point of the utterance, compare with a second threshold value a part of the utterance that predates the first starting point to determine a second starting point of the utterance, and compare with the second threshold value a part of the utterance that postdates the first ending point to determine a second ending point of the utterance.
In another aspect of the invention, a method of detecting endpoints of an utterance advantageously includes the steps of comparing an utterance with a first threshold value to determine a first starting point and a first ending point of the utterance; comparing with a second threshold value a part of the utterance that predates the first starting point to determine a second starting point of the utterance; and comparing with the second threshold value a part of the utterance that postdates the first ending point to determine a second ending point of the utterance.
In another aspect of the invention, a device for detecting endpoints of an utterance advantageously includes means for comparing an utterance with a first threshold value to determine a first starting point and a first ending point of the utterance; means for comparing with a second threshold value a part of the utterance that predates the first starting point to determine a second starting point of the utterance; and means for comparing with the second threshold value a part of the utterance that postdates the first ending point to determine a second ending point of the utterance.


REFERENCES:
patent: 4567606 (1986-01-01), Vensko et al.
patent: 4731811 (1988-03-01), Dubus
patent: 4821325 (1989-04-01), Martin et al.
patent: 4881266 (1989-11-01), Nitta et al.
patent: 4945566 (1990-07-01), Mergel et al.
patent: 4961229 (1990-10-01), Takahashi
patent: 4991217 (1991-02-01), Garrett et al.
patent: 5012518 (1991-04-01), Liu et al.
patent: 5040212 (1991-08-01), Bethards
patent: 5054082 (1991-10-01), Smith et al.
patent: 510950

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for accurate endpointing of speech in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for accurate endpointing of speech in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for accurate endpointing of speech in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2571736

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.