Method and apparatus for accelerating navigation of...

Electrical computers and digital processing systems: multicomput – Remote data accessing – Accessing a remote server

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S217000, C709S203000, C709S241000

Reexamination Certificate

active

06526439

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates generally to data communications, and in particular to two-way data communication devices, including a mobile computing device, a mobile device, a landline telephone, and an Internet appliance controller, that permit a user to interface and interact with a server over a data network.
2. Description of the Related Art
The Internet is a rapidly growing communication network of interconnected computers and computer networks around the world. Together, these millions of connected computers form a vast repository of hyperlinked information that is readily accessible by any of the connected computers from anywhere at any time. To provide mobility and portability, wireless Internet computing devices were introduced and are capable of communicating, via wireless data networks, with the computers on the Internet. With the wireless data networks, people, as they travel or move about, are able to perform, through the wireless computing devices, exactly the same tasks they could do with computers on the Internet.
The most common remote access paradigm is, as of today, the one in which a laptop personal computer is equipped with a wireless communication mechanism such as a wireless modem. This paradigm may remain useful for a considerable number of mobile applications and users that are willing to tote a laptop personal computer. However, there has been a growing need for a mobile paradigm in which the Internet can be instantly accessed by smaller mobile devices, such as mobile phones and personal digital assistants (PDA). The smaller mobile devices are generally designed very small in size and light in weight. With increasing data processing capabilities, more and more users are carrying such devices around to materialize their unproductive time into productive time.
Regular mobile phones can return calls, check voice mail or enable users to be available for teleconferences anywhere at any time. However, new mobile phones are desired that are not just reactive to calls but also are proactive. For example, an ideal mobile phone would meld voice, data, and PDA functionality into a single handset that can effectively, through a host computer, access a myriad of public and enterprise information services in the Internet. The evolution of the mobile phones or other mobile computing devices has been evidently fueled by the demand of users for immediate access to the information they are looking for in the Internet. For example, a traveler may request the departure time of a next available flight when on the way to an airport, or a trader may purchase shares of stock at a certain price. The pertinent information from these requests or transactions may include the airline and the flight number for the traveler, as well as the stock name, the number of shares and the price being purchased for the trader. To be timely and regularly informed, a preferable way is to electronically communicate the information requests using a wireless data network. The wireless data network, for example, connects to a flight information server or stock quote server so that the desired flight information or the current stock price can be retrieved therefrom on demand.
To increase portability and mobility, most mobile devices are designed small in size, light in weight, low in power consumption, and as economical and portable as possible. However, such mobile computing devices with such thin designs often have very limited computing resources. For example, the computing power of a mobile computing device may be equivalent to less than one percent of what is provided in a typical desktop or portable personal computer. Furthermore, the memory capacity of mobile computing devices are generally less than 250 kilobytes and their LCD display is perhaps four lines high by twelve or twenty characters and their graphics capabilities are very limited or nearly nonexistent. Finally, the input interface on mobile computing devices is often a keypad that has far fewer buttons than a PC keyboard does or a stylus and digitizer. These design constraints generally seen in a mobile device make Internet navigation noticeably difficult. For example, it is quite laborious to enter a long alphanumeric Universal Resource Locator (URL) to access a specified service using the phone keypad. Nevertheless, there have been many efforts to provide efficient user input mechanisms through a phone keypad. For example, one common practice is to provide multifunction for the numerical keys in the phone keypad wherein each of the numerical keys or numbered buttons represents two or three letters in the English alphabets, such that a desired letter is obtained by repeatedly stroking a corresponding numerical key.
Another method is the use of a prediction mechanism based on the common usage of
20
words to minimize keystrokes. For example, “e” may be automatically entered when a user keys in “th”. A popular adopted method in the Internet navigation in a mobile device is to provide a mechanism to predefine a set of URLs of frequently visited Web sites, each associated with a numeral. Therefore, merely pressing a specified numeral key leads to a corresponding Web site. However, many Web sites provide hierarchical layers or pages of information services, so that navigating through the hierarchical Web site often demands further key stroking to reach a particular page through a number of intermediate pages. Under the limited bandwidth of the current wireless data network and with the low memory in the mobile devices, the process of going via the intermediate pages slows information transmission speed and intensifies the network traffic. Therefore, there is a great need for an efficient mechanism that brings to the desired page without physically waiting for the delivery of every intermediate page in order to move onto the next page. There is a further need for a mechanism for thin devices to reach a desired page without intensifying network traffic. When some Web sites provide hierarchical layers of information in different languages, navigating page by page to a desired page based on a hyperlink in intermediate pages can be difficult for users who may only understand a particular language. There is thus still a further need for a way to a compound request to arrive at a desired page without following up all the intermediate pages.
SUMMARY OF THE INVENTION
The present invention has been made in consideration of the above described problems and has particular applications to the navigation of Internet web pages using thin devices, such as a mobile computing device, a mobile device, a landline telephone, and an Internet appliance controller. Under the limited bandwidth of the current wireless data network and the low computing resources available in the thin devices, navigating hierarchical layers of accessible information based on a compound request yields unexpected results. The compound request generally comprises an antecedent request and a final request wherein the antecedent request comprises a sequence of intermediate requests. Users of the thin devices can now arrive at a desired page designated by the final request with only one compound request without having to follow up all intermediate pages respectively designated by the intermediate requests. The intermediate requests are parsed and processed internally either in the thin devices or at a server site, which increases significantly the delivery speed of the desired information and reduces dramatically the network traffic.
According to one embodiment, the present invention is a method for accelerating navigation of hierarchical layers of accessible information hosted in a server device through a two-way interactive communication device over a data network, the method comprising:
displaying a menu comprising a plurality of items, each having an address identifier;
receiving a compound request entered by a user of the two-way interactive communication device to display desired information;
parsing the compound request to obtain a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for accelerating navigation of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for accelerating navigation of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for accelerating navigation of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3128010

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.