Method and apparatus and prefabricated replacement tube for...

Electric heating – Metal heating – Of cylinders

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S125110, C228S119000, C029S890031

Reexamination Certificate

active

06596957

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a method and apparatus for repairing a defective tube, and more particularly to a method, apparatus, and prefabricated replacement tube for partial tube replacement in a heat exchanger to which access is restricted.
BACKGROUND OF THE INVENTION
Various types of heat exchangers, such as boilers and waterwalls, are commonly used in hoods and stacks for cooling and/or treating industrial exhaust, for example from steelmaking furnaces, and by utilities (electric companies) to produce electrical energy and/or to cool power generating equipment.
One problem with the operation of heat exchangers is that the heat, gases, dust and substances or fluids to which they are exposed frequently leads to increased rates of corrosion resulting in damage or defects in the tubes of the heat exchanger and subsequent leakage.
A conventional approach to repairing the heat exchanger is to remove a section of the damaged tube, including the defect, over some length, and to install a new replacement tube in its place. The ends of the replacement tube and the stubs of the existing tube are prepared for welding by fitting and beveling surfaces at which they will be joined. Typically, the joining is done manually using shielded metal arc welding (SMAW).
One problem with this approach is that because the weld is performed completely from the outer diameter (OD) of the tube, access is required to all sides of the tube, which is not possible for all heat exchanger designs, particularly boilers such as waterwalls. For example, tubes in a waterwall are frequently connected together along the length of their sides by a metal-webbing or membrane to give added rigidity and strength to the waterwall. Moreover, the waterwall is usually positioned abutting or in close proximity to an outer wall of the boiler (the cold-side). Thus, access is limited to more than half of the outer surface of the tube. This limited accessibility makes it difficult for the welder to achieve good weld tie-in/penetration and often results in less than desirable weld quality and may create problems in the future.
Yet another problem with the above tube replacement method is manual welds performed from the OD are prone to weld defects such as reinforcement or excessive build-up of material on the inner diameter (ID) that lead to restricted fluid flow and accelerated corrosion or erosion at the weld locations.
Another generally known approach for partial replacement of a tube in a heat exchanger, which avoids some of the problems of the above approach, is described, for example, in U.S. Pat. No. 4,047,659, to Vucic (VUCIC). VUCIC discloses accessing the ID of the tube by cutting windows at each end of the replacement tube, the windows intersecting the ends of the replacement tube, and manually welding a portion of the attachment weld from the ID through the window. Covers for the windows are fabricated and welded over the windows from the OD completing the repair.
While a significant improvement over the above approach, this approach is also not wholly satisfactory. A major shortcoming of the approach disclosed in VUCIC is the time required for measuring the section cut from the tube to be repaired, cutting a replacement tube to the correct length, cutting out the windows, preparing the ends of the replacement tube for welding, fabricating covers for the windows and welding the covers over the windows. Another problem with the approach in VUCIC is that all welds are performed manually using a SMAW process. Since the SMAW welds are full penetration, i.e., through the entire thickness of the tube, build-up on the ID for that portion of the welding done from the OD, such as the window covers, can still be a problem. Moreover, because the welds are performed manually weld quality is inconsistent, not-reproducible and can vary from weld to weld.
Accordingly, there is a need for a method and apparatus for repairing a defective tube that provides a weld quality similar to that of a new installation or original fabrication. It is desirable that the method and apparatus eliminate excessive buildup of material from the ID of the repaired tube that can disrupt or reduce fluid flow through the repaired tube and lead to increased erosion/corrosion at the joints. It is also desirable that the method and apparatus enable repairs to be completed quickly with a minimum amount of down time for the heat exchanger. It is further desirable that the method and apparatus be automatic to reduce the level of skilled labor needed.
The present invention provides a solution to these and other problems, and offers other advantages over the prior art.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method, apparatus and prefabricated replacement tube for partial tube replacement in a heat exchanger to which access is restricted.
According to one aspect, the present invention provides a method for repairing a defect in a tube using an apparatus including a rotatable torch assembly, a wire feeder for supplying wire to the rotatable torch assembly, and a rotational drive assembly for supporting and rotating the rotatable torch assembly. Generally, the method involves steps of: (i) removing a section of the tube having the defect therein; (ii) fabricating a replacement tube having a wall with an opening extending through a portion thereof, and first and second ends prepared for joining to stubs of the tube formed by removal of the section of the tube having the defect therein; (iii) positioning the replacement tube between the stubs of the tube; (iv) inserting the rotatable torch assembly into the replacement tube through the opening, the rotatable torch assembly configured to align with a joint between the first end of the replacement tube and a stub; and (v) joining the first end of the replacement tube to the stub entirely along a joint therewith by rotating the rotatable torch assembly within the replacement tube. Optionally, slip rings in sliding engagement with the outer surface of the replacement tube hold it in position before it is joined to the stubs. In this embodiment, following the positioning of the replacement tube between the stubs, the slip rings slide up or down to cover the joints. The slip rings have the further advantage of serving as backing rings strengthening the joint when the replacement tube is joined to the stubs, typically by welding.
In one embodiment, the replacement tube is prefabricated having a first end and a second end separated by a predetermined length, and the step of removing a section of the tube having the defect therein involves removing a length of the tube substantially equal to the predetermined length of the prefabricated replacement tube.
In another embodiment, the opening is centrally located between the first and second ends, and the method further includes the steps of: (i) removing the rotatable torch assembly from the opening; (ii) reorienting the rotatable torch assembly; (iii) re-inserting the rotatable torch assembly into the replacement tube through the opening, the rotatable torch assembly configured to align with a joint between the second end of the replacement tube and another one of the stubs; and (iv) joining the second end of the replacement tube to one of the stubs substantially entirely along or around a joint formed there between by rotating the rotatable torch assembly within the replacement tube. The repair of the tube is completed by removing the rotatable torch assembly from the opening, and sealing the opening with a prefabricated cover. Typically, the cover is cover-welded or welded to the opening.
As noted above, the replacement tube is joined to the stubs by welding. Preferably, the replacement tube is joined to the stubs by butt-welding or welding the first and second ends of the replacement tube to the stubs using the rotatable torch assembly. In one version of this embodiment, the apparatus is a Gas Metal Arc Welding (GMAW) apparatus, or a Gas Tungsten Arc Welding (GTAW) apparatus, and the step of weldi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus and prefabricated replacement tube for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus and prefabricated replacement tube for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus and prefabricated replacement tube for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077966

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.