Method and antibody for imaging breast cancer

Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing – Magnetic imaging agent

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S009100, C424S009341, C424S009600, C424S142100, C424S155100, C424S130100, C435S007100, C435S007210, C435S007230, C530S388100, C530S388150, C530S389100, C530S389700, C530S388800, C530S350000, C536S023500

Reexamination Certificate

active

06737040

ABSTRACT:

FIELD OF THE INVENTION
This invention relates, in part, to newly developed assays for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating cancers, particularly breast cancer.
BACKGROUND OF THE INVENTION
One of every nine American women will develop breast cancer sometime during her life based on a lifespan of 85 years. Annually, over 180,000 women in the United States will be diagnosed with breast cancer and approximately 46,000 will die of the disease.
Every woman is at risk for breast cancer. A woman's chances of developing breast cancer increase as she grows older; 80 percent of all cancers are found in women over the age of 50. There are also several risk factors that can increase a woman's chances of developing cancer. A woman may be at increased risk if she has a family history of the disease, if she had her first child after the age of 30 or has no children, or if she began menstruating early.
However, more than 70 percent of women who develop breast cancer have no known risk factors. Less than 10 percent of breast cancer cases are thought to be related to the BRCA1 gene discovered in 1994. Researchers are now investigating the role other factors such as nutrition, alcohol, exercise, smoking, and oral contraceptives may play in cancer prevention.
As with many other cancers, the best chance for successful treatment occurs when breast cancer is found early. Mammograms, special x-rays of the breast, can detect more than 90 percent of all breast cancers. If breast cancer is found early, the chance of cure is greater than 90 percent. Treatment options include surgery, chemotherapy, and radiation therapy depending on the stage of the cancer.
Procedures used for detecting, diagnosing, monitoring, staging, prognosticating and imaging breast cancer are of critical importance to the outcome of the patient. Patients diagnosed with early breast cancer generally have a much greater five-year survival rate as compared to the survival rate for patients diagnosed with distant metastasized breast cancer. New diagnostic methods which are more sensitive and specific for detecting early breast cancer are clearly needed.
Breast cancer patients are closely monitored following initial therapy and during adjuvant therapy to determine response to therapy and to detect persistent or recurrent disease of metastasis. There is clearly a need for a breast cancer marker which is more sensitive and specific in detecting breast cancer and its recurrence and progression.
Another important step in managing breast cancer is to determine the stage of the patient's disease. Stage determination has potential prognostic value and provides criteria for designing optimal therapy. Generally, pathological staging of breast cancer is preferable over clinical staging because the former gives a more accurate prognosis. However, clinical staging would be preferred were it at least as accurate as pathological staging because it does not depend on an invasive procedure to obtain tissue for pathological evaluation. Staging of breast cancer would be improved by detecting new markers in cells, tissues, or bodily fluids which could differentiate between different stages of invasion.
In the present invention methods are provided for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating breast cancer via 9 Breast Specific Genes (BSGs). The 9 BSGs refer, among other things, to native proteins expressed by the genes comprising the polynucleotide sequences of any of SEQ ID NO: 1-9. In the alternative, what is meant by the 9 BSGs as used herein, means the native mRNAs encoded by the genes comprising any of the polynucleotide sequences of SEQ ID NO: 1-9 or it can refer to the actual genes comprising any of the polynucleotide sequences of SEQ ID NO: 1-9.
Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.
SUMMARY OF THE INVENTION
Toward these ends, and others, it is an object of the present invention to provide a method for diagnosing the presence of breast cancer by analyzing for changes in levels of BSG in cells, tissues or bodily fluids compared with levels of BSG in preferably the same cells, tissues, or bodily fluid type of a normal human control, wherein a change in levels of BSG in the patient versus the normal human control is associated with breast cancer.
Further provided is a method of diagnosing metastatic breast cancer in a patient having such cancer which is not known to have metastasized by identifying a human patient suspected of having breast cancer that has metastasized; analyzing a sample of cells, tissues, or bodily fluid from such patient for BSG; comparing the BSG levels in such cells, tissues, or bodily fluid with levels of BSG in preferably the same cells, tissues, or bodily fluid type of a normal human control, wherein a change in BSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.
Also provided by the invention is a method of staging breast cancer in a human which has such cancer by identifying a human patient having such cancer; analyzing a sample of cells, tissues, or bodily fluid from such patient for BSG; comparing BSG levels in such cells, tissues, or bodily fluid with levels of BSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein a change in BSG levels in the patient versus the normal human control is associated with a cancer which is progressing or regressing or in remission.
Further provided is a method of monitoring breast cancer in a human having such cancer for the onset of metastasis. The method comprises identifying a human patient having such cancer that is not known to have metastasized; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for BSG; comparing the BSG levels in such cells, tissue, or bodily fluid with levels of BSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein a change in BSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.
Further provided is a method of monitoring the change in stage of breast cancer in a human having such cancer by looking at levels of BSG in a human having such cancer. The method comprises identifying a human patient having such cancer; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for BSG; comparing the BSG levels in such cells, tissue, or bodily fluid with levels of BSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein a change in BSG levels in the patient versus the normal human control is associated with a cancer which is progressing or regressing or in remission.
Further provided are antibodies against the BSGs or fragments of such antibodies which can be used to detect or image localization of the BSGs in a patient for the purpose of detecting or diagnosing a disease or condition. Such antibodies can be polyclonal or monoclonal, or prepared by molecular biology techniques. The term “antibody”, as used herein and throughout the instant specification is also meant to include aptamers and single-stranded oligonucleotides such as those derived from an in vitro evolution protocol referred to as SELEX and well known to those skilled in the art. Antibodies can be labeled with a variety of detectable labels including, but not limited to, radioisotopes and paramagnetic metals. These antibodies or fragments thereof can a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and antibody for imaging breast cancer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and antibody for imaging breast cancer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and antibody for imaging breast cancer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3239918

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.