Method and a system for conducting failure mode recovery in...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06665565

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to medical devices. Specifically, the invention relates to a method and a system for monitoring the reliability and integrity of a remote communication link between a programming unit and an implanted medical device.
BACKGROUND OF THE INVENTION
In recent years, implantable electronic device technology has rapidly advanced. Sizes and weights have decreased, while functionality has increased. These advances have created a corresponding demand for two-way communication or telemetry between the implantable medical device and an external device, for example, a programmer device. In a pacemaker system, for example, a programmer device downloads to an implanted pacemaker data such as operating parameters. Likewise, data may flow from the implanted device to the programmer device. Modern pacemakers are capable of storing significant amounts of data about the patient, for example, the average heart rate, and information pertaining to the pacemaker itself, for example, battery voltage level. This data may need to be transmitted to the programmer device for evaluation by a physician.
Currently implanted medical device programmers typically include an extendible head portion that includes an antenna. The antenna is connected to other circuitry in the programmer device via a stretchable coil cable. Thus, the head portion can be positioned over the patient's implanted device site for programming or telemetry interrogation of the implanted device. Command instructions or data that are downloaded to the implanted device are referred to as downlink transmissions, and data transmitted from the implanted device to the programmer device are referred to as uplink transmissions.
A technology-based health care system that fully integrates the technical and social aspects of patient care and therapy should be able to flawlessly connect the patient with care providers irrespective of separation distance or location of the participants. While clinicians will continue to treat patients in accordance with accepted modem medical practice, developments in communications technology are making it ever more possible to provide medical services in a time and place independent manner.
Prior art methods of clinical services are generally limited to in-hospital operations. For example, if a physician needs to review the performance parameters of an implanted device, the patient will likely visit the clinic. If the medical condition of the patient with the implanted device warrants a continuous monitoring or adjustment of the device, the patient will have to stay in the hospital for an extended period of time. Such continuous treatment plans pose both economic and social hardship on patients. Depending on the frequency of data collection this procedure may seriously inconvenience patients that live in rural areas or have limited physical mobility. The need for upgrading the software of an implanted medical device also requires another trip to the hospital to have the upgrade installed. Further, as the segment of the population with implanted medical devices increases many more hospitals, clinics and service personnel will be needed to provide in-hospital care to patients, thus escalating the cost of healthcare.
Updating operating parameters and upgrading software in an implanted device are two examples where the state of an implanted device is changed. If the process of changing the state of an implanted device is interrupted, the physician must restore the device to a known state to ensure proper operability. If state changes to an implanted device are directed from a remote location, the process must also address possible interruptions.
SUMMARY OF THE INVENTION
Various embodiments of the present invention are directed to addressing various needs in connection with programming an IMD. Accordingly, the present invention provides a method and system that reduces the risk of leaving an IMD in an undesirable state when conditions unexpectedly change during programming of the IMD.
In various embodiments the present invention supports a communications system for transferring information between an IMD and a remote expert data center capable of dispensing therapy and clinical care on real-time basis. The present invention provides a method that improves the degree of patient safety while providing access to a remote expert data system. The capability provided by the present invention reduces the burden of the IMD patient of having to travel to a specific hospital or clinic for program upgrades, physician follow up evaluations and adjustments that need to be made to the IMD(s).
According to one embodiment of the invention, failure mode recovery in an implanted device is facilitated when a communications link with a medical communications system having an application program is interrupted. The method includes establishing a communications link between the medical communications system and an extender module configured to receive an application proxy from the application program. The application proxy, which is configured to transition the implanted device to a recovery state in response to a set of conditions, is then loaded into the extender module via the application program. The application program then transitions the implanted device to a completed state, and the transition process is monitored. The implanted device is automatically restored by the application proxy to the recovery state if the set of conditions is detected while transitioning to the completed state.
According to another embodiment of the invention, failure mode recovery in an implanted device is facilitated when a communications link with a medical communications system is interrupted. The method includes loading the application proxy from the application program into the extender module. The application proxy is configured to transition the implanted device to a recovery state in response to a set of conditions. A communications link is then established between the implanted device and the medical communications system via the extender module. The implanted device then transitions to a completed state via the application program, while the transition to the completed state is monitored. The implanted device is automatically restored by the application proxy to the recovery state if the set of conditions is detected while transitioning to the completed state.
The above summary of the present invention is not intended to describe each illustrated embodiment or every implementation of the present invention. The figures in the detailed description that follow more particularly exemplify these embodiments.


REFERENCES:
patent: 5456692 (1995-10-01), Smith et al.
patent: 5792204 (1998-08-01), Snell
patent: 6198971 (2001-03-01), Leysieffer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and a system for conducting failure mode recovery in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and a system for conducting failure mode recovery in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and a system for conducting failure mode recovery in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3178127

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.