Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
2002-01-11
2003-12-02
Weddington, Kevin E. (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C514S002600, C514S642000, C514S693000, C514S728000, C514S724000
Reexamination Certificate
active
06656919
ABSTRACT:
FIELD OF INVENTION
The present invention relates to methods and compositions for killing or rendering lifeless sporular forms of microbes. More particularly, the present invention relates to methods and compositions for killing or rendering lifeless sporular forms of
Bacillus anthracis
. This invention also relates to a broad-spectrum biocidal composition effective for the rapid killing of a wide variety of bacteria and spores on a wide variety of nonabsorbent surfaces such as metals, plastics, resins, woods, rubbers, ceramics, and glasses.
The methods of the present invention are highly effective and include using a composition that is capable of inactivating (killing) micro-organisms including bacterial and fungal spores at room temperature such that the initial count is reduced to zero in EPA-specified tests (AOAC Manual for Sporicidal Testing, Chapter 14) involving
Bacillus subtilis, Bacillus cereus, Bacillus anthracis, Clostridium sporogenes, Pseudomonas aeruginosa
and
Staphyloccus aureus.
This invention also relates generally to compositions for disinfecting and sterilizing substrates as well as to processes for preparing and using such compositions.
This invention relates to aqueous chemical compositions for room temperature sterilization with improved effectiveness and longer active life. In use, the composition of the present invention can also be employed as a cleaner, sanitizer, disinfectant, and chemical sterilizer. The numerous advantages of this invention with respect to its methods of use and applications are further described below.
BACKGROUND OF INVENTION
The threat of terrorist action using chemical warfare (CW), biological warfare (BW), chemical or infectious agents has occurred throughout the world and more recently a terrorist attack occurred in the United States wherein anthrax spores were disseminated through the mail system. These acts of terrorism are unpredictable and counter efforts have been aimed at rapid, accurate diagnosis and speedy treatment.
Additionally, the recent demise of the cold war and a decline in super-nation tensions has been accompanied by an increase in concern about the viability of weapons of mass destruction such as chemical and biological (CB) weapons. CB weapons include chemical agents such as phosgene, nerve agents such as Sarin, and biological agents such as anthrax or smallpox. CB weapons may be delivered to occupants within a building by releasing the agents either external to the building or within the building.
Anthrax is a highly toxic biological warfare agent. Anthrax is a natural disease of herbivorous animals that can be transmitted to humans. The causative agent
Bacillus anthracis
, can form spores which are extremely hardy and can remain alive for a very long time. After inhalation of a heavy dose of anthrax spores, however, the onset of the disease may occur within a day and death may follow rapidly in a couple of days.
Bacillus anthracis
is the etiologic agent responsible for anthrax, a disease often found in persons exposed to infected animals or their products. Persons particularly exposed to animals include veterinarians, laboratory technicians, ranchers and employees working with skin or hair of animals. The mode of entry into the body may be the skin or, when contaminated meat is eaten, the gastrointestinal tract. Inhaling of spores can cause inhalation anthrax, a disease that can be fatal.
In response to such a release of harmful agents, people may be moved into a building, out of a building, or from one part of a building to another, depending on the location of the release and the relative safety of various areas of the building or buildings.
In response to such an agent release, it may also be desirable to attempt to wash the harmful agent from people to benefit the contaminated personnel and to lessen the spread of the agent carried by the contaminated personnel. While such decontamination may be desirable, it may not be desirable to generate concern by having an explicit and distinct CB decontamination station placed in a building hallway.
The risk of CB weapons being used may escalate rapidly over a short time period. Given long-range awareness and time for preparation, particular buildings such as key military sites, can be equipped or designed in advance to deal with this possibility. However, the awareness of the imminent likely use of CB weapons against a building may give only a short time period for preparation. Also, the risk against a particular building may increase in a short time period.
What would be desirable is a system for decontaminating people that is unobtrusive and does not call attention to itself as a decontamination station for CB warfare. What would be desirable is a system for CB decontamination that could be added relatively quickly to existing building utilities while attracting little attention and incurring little expense.
Spores are known to form from aerobic Bacilli, anaerobic Clostridia, selected sarcinae and a few actinomycetes. Spores resemble certain plant seeds in that they do not carry out any metabolic reactions. In this regard they are especially suited to withstand severe environmental stress and are known to survive prolonged exposures to heat, drying, radiation and toxic chemicals. These properties make spores especially difficult to kill in environments, like living tissue or objects which come in contact with living tissue, which would be adversely effected by extreme conditions. Additionaly, it is also known that spores are metabolic by-products in the life cycle of some bacteria and fungi, and are often very resistant to physical and chemical disinfectant agents. Spores contain one or several nuclei. Fungi produce a variety of exospores, including conidia, chlamydospores (thick-walled and very resistant), and sporangiospores. Bacteria produce endospores, i.e. spores located within the cytoplasm of the parental cell.
Bacterial endospores are differentiated cells formed within a vegetative cell; they encase a genome in an insulating dehydrated vehicle that makes the cell ametabolic and resistant to various lethal agents, but permits subsequent germination in an appropriate medium. Spores are much more resistant than the parental (vegetative) cell to the lethal effect of heat, drying, freezing, toxic chemical s and electromagnetic radiations. Spores are formed by the invagination of a double layer of the cytoplasmic membrane, which closes off to surround a bacterial chromosome and a small amount of cytoplasm. A thin spore wall, and a thicker cortex with a much looser peptidoglycan, are synthesized between the two layers; outside the cortex is a protein coat, rich in disulfide cross-links and constituting up to 80% of the total protein of the spore. The keratin-like impervious properties of the coat account for the resistance to attack by deleterious chemicals, while the dehydration and the presence of a large amount of Calcium and dipicolinate contribute to the heat resistance.
It is known that disulfide bridges are a feature of cellular walls and other protein-containing features of bacterial cells. Mahler, H. & Coredes, E., Structural Organization of Proteins, Biological Chemistry 74 (1966). A typical bacterial spore is surrounded by an exosporium, a loose sac peculiar to some spore species. Other layers, working inwardly, include (a) multi-layered coats containing proteins rich in disulfide linkages, (b) a thick cortex layer which contains the polymer murein (or peptidoglycan), (c) a plasma membrane, and (d) a core or spore protoplasm.
A bacterial spore's first line of resistance to exogenous agents consists of the proteinaceous outer coats that contain keratin-like proteins. As is well-known, the stability of keratin structures is due to frequent primary valence cross links (disulfide bonds) and secondary valence cross links (hydrogen bonds) between neighboring polypeptide chains. Keratin-like proteins are typically insoluble in aqueous salt solutions or dilute acid or base solutions, and are also resistant to proteolytic enzymes and hydrolysi
Baugh Charles L.
Baugh Clarence L.
Baugh Thomas E.
Husar Esq. C. J.
Weddington Kevin E.
LandOfFree
Method and a product for the rapid decontamination and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and a product for the rapid decontamination and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and a product for the rapid decontamination and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3118620