Communications – electrical: acoustic wave systems and devices – Testing – monitoring – or calibrating
Reexamination Certificate
2002-07-30
2004-08-10
Lobo, Ian J. (Department: 3662)
Communications, electrical: acoustic wave systems and devices
Testing, monitoring, or calibrating
C340S690000
Reexamination Certificate
active
06775202
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and a device for reproducing solid body vibrations for the prediction of fracture processes in solid bodies, particularly in the earth crust, and thus for the prediction of earthquakes.
2. Description of the Background Art
The most important measuring device in seismology is the seismometer. The data acquired by the seismometer form the basis of the seismological exploration of the interior of the earth. Since the invention of the seismometer about a hundred years ago, the improvement of the measuring device and the global multiplication of the measuring stations has been one of the most eminent objects of seismology. Within a short time, the measurements brought about great progress in the comprehension of the internal structure and the constitution of the, earth. Meanwhile, there exists a worldwide network of seismic stations acquiring precise data round the clock. The archives of seismic registration have a very great stock of seismograms, which are continuously increasing.
To the same extent that the structural description of the earth structure gets finer, the progress in the temporally oriented earthquake prediction research stagnates. Temporal prediction, i.e., a short-range, medium-range and long-range prediction about the location and dimension of an earthquake is still lacking.
So far, ground vibrations have been illustrated in geophysics as seismograms, i.e., as a curve in a Cartesian coordinate system. To extract a useful, clear piece of information from the complex signal, the times of arrival of earthquake waves are typically determined and therefrom, among other things, the epicenter, depth of the hypocenter and magnitude of an earthquake are calculated. The event data are compiled in catalogues, and these catalogues form the basis of almost all seismologically oriented prediction researches. Respectively different statistical methods are performed by means of the catalogue data to draw conclusions from the space-time micro- and macro-quake activity with respect to future events.
With respect to the prediction of earthquakes, however, these methods suffer from the disadvantage that they do not use the data of the time-continuous seismograms, but use the data of the catalogue information that are reduced to individual points of time. Furthermore, supraregional movements like remote earth tremors, natural vibrations etc. are generally not considered in local catalogue data, since the number of events to be evaluated would increase overproportionally otherwise. The examination of the phenomenon of the relay earthquakes, wherein the spreading wave of an earthquake triggers another event, is too time-consuming with purely visual techniques of illustration and evaluation. Not least, the methods of prior art have the disadvantage that in a purely visual illustration and evaluation, not all of the features required for the prediction of earthquakes become apparent.
If the state of tension and the course of the predecessor phenomena in time up to the actual fracture of the earth crust, i.e., up to the formation of an earthquake, is to be studied, the data has to be edited such that a development is recognizable.
A dynamic kind of editing seismic data known in the prior art is the audification. The basic idea of accelerating seismic signals and interpreting them as audio signals was first published by S. D. Speeth in Seismometer Sounds, Journal of the Acoustical Society of America 33: 909-916 in 1961. Speeth used a method to distinguish between signals of natural earthquakes and those signals arising from nuclear explosions.
Frantti and Leverault pursued this approach and scrutinized the average rate of success in an extended user study in 1965 (Frantti, G. E. and L. A. Leverault (1965). Auditory Discrimination of Seismic Signals from Earthquakes and Explosions. Bulletin of the Seismological Society of America 55: 1-25).
In 1994, Hayward published on audification and presented a relatively detailed introduction into the method (Hayward, C. (1994). Listening to the Earth Sing. Auditory Display. Sonification, Audification, and Auditory Interfaces. G. Kramer. Reading, Addison-Wesley: 369-404).
In 1988, Dombois proposed the method of audification for the first time in connection with earthquake research, but he did not give any definite indications on how to translate it into practice (Dombois, F. (1998). Über Erdbeben. Ein Versuch zur Erweitemung seismologischer Darstellungsweisen. Diss. Berlin, Humboldt-Universität. (§ 17 in particular)). In Using Audification in Planetary Seismology, Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29 to Aug. 1, 2001, Dombois presented a qualitative evaluation of the sounds resulting from the audification of seismological data.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to provide a device for reproducing solid body vibrations for the prediction of fracture processes in solid bodies, particularly in the earth crust, which does not only use event recordings, but the totality of the continuously acquired data, processes and makes supraregional movements perceptible as well and utilizes further means beside the already known visual representation and evaluation in order to predict an earthquake as precise as possible.
To solve this object, the invention provides a device for reproducing solid body vibrations for the prediction of fracture processes in a solid body, particularly in the earth crust. The device includes at least one vibration recording means for recording vibrational data from the surface of a solid body and a data converter for converting the vibrational data recorded by the vibration recording means. The data converter compresses the recording time of the vibrational data such that the frequency range of the vibrational signal extends into the audible frequency range of human beings. The device further includes an audio amplifier playing the converted data, a frequency separating filter, at least one loudspeaker and a soundfloor. The data that is played by the audio amplifier are passed on to the at least one loudspeaker and the soundfloor via the frequency separating filter in correspondence with the frequency thereof.
The present invention is based on the cognition of perception psychology and sensory philosophy that the hearing surpasses the abilities of the eye by far as to the perception of temporal dynamics, of continuum and of the tension between memory and expectation. Correspondingly, according to the invention, the vibrational data recorded by a seismometer are edited by a data converter and subsequently by an audio amplifier such that they are audible for the user. Since the frequencies of a seismic signal cover about 17 octaves, the human ear, however, is only able to perceive 10 octaves, a vibration reproduction by a soundfloor is used in parallel with the audio reproduction. The soundfloor enables the user to feel the infrasound of the converted seismometer signal as ground movement. A soundfloor can be a spring-loaded floor plate under which a bass loudspeaker or subwoofer having a high mass is mounted. By inputting audio signals of low frequency, the floor can be set in vibration in conformity with the signals and acts as an active vibration floor. Originally, the soundfloor technology has been developed for dance floors in discotheques, but meanwhile, it is also used in virtual reality displays.
In contrast to the seismic catalogues used in the prior art, the device according to the invention leaves the flux of data continuously recorded by the seismometer unreduced. Only the time axis of the recorded data flux is compressed by the data converter. Thus, supraregional movements such as the so-called background noise, the transient response behavior of earthquake signals and the dynamic characteristic in the acoustic/haptic reproduction of the data are preserved. Since the ear is able to process and interpret the superposition of several vibr
Birch & Stewart Kolasch & Birch, LLP
Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung
Lobo Ian J.
LandOfFree
Method and a device for reproducing solid body vibrations... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and a device for reproducing solid body vibrations..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and a device for reproducing solid body vibrations... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3357599