Method & apparatus for W-CDMA handoff searching

Multiplex communications – Communication over free space – Having a plurality of contiguous regions served by...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S335000, C370S342000, C380S268000, C380S270000

Reexamination Certificate

active

06744747

ABSTRACT:

BACKGROUND
1. Field
The present invention relates generally to communications, and more specifically to a novel and improved method and apparatus for W-CDMA handoff searching.
2. Background
Wireless communication systems are widely deployed to provide various types of communication such as voice, data, and so on. These systems may be based on code division multiple access (CDMA), time division multiple access (TDMA), or some other modulation techniques. A CDMA system provides certain advantages over other types of systems, including increased system capacity.
A CDMA system may be designed to support one or more CDMA standards such as (1) the “TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System” (the IS-95 standard), (2) the standard offered by a consortium named “3rd Generation Partnership Project” (3GPP) and embodied in a set of documents including Document Nos. 3G TS 25.211, 3G TS 25.212, 3G TS 25.213, and 3G TS 25.214 (the W-CDMA standard), (3) the standard offered by a consortium named “3rd Generation Partnership Project 2” (3GPP2) and embodied in a set of documents including “C.S0002-A Physical Layer Standard for cdma2000 Spread Spectrum Systems,” the “C.S0005-A Upper Layer (Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems,” and the “C.S0024 cdma2000 High Rate Packet Data Air Interface Specification” (the cdma2000 standard), and (4) some other standards.
Pseudorandom noise (PN) sequences are commonly used in CDMA systems for spreading transmitted data, including transmitted pilot signals. The time required to transmit a single value of the PN sequence is known as a chip, and the rate at which the chips vary is known as the chip rate. CDMA receivers commonly employ RAKE receivers. A rake receiver is typically made up of one or more searchers for locating direct and multipath pilots from one or more base stations, and two or more multipath demodulators (fingers) for receiving and combining information signals from those base stations.
Inherent in the design of direct sequence CDMA systems is the requirement that a receiver must align its PN sequences to those of a base station. For example, in IS-95, each base station and subscriber unit uses the exact same PN sequences. A base station distinguishes itself from other base stations by inserting a unique time offset in the generation of its PN sequences (all base stations are offset by an integer multiple of 64 chips). A subscriber unit communicates with a base station by assigning at least one finger to that base station. An assigned finger must insert the appropriate offset into its PN sequence in order to communicate with that base station. An IS-95 receiver uses one or more searchers to locate the offsets of pilot signals, and hence to use those offsets in assigning fingers for receiving. Since IS-95 systems use a single set of in-phase (I) and quadrature (Q) PN sequences, one method of pilot location is to simply search the entire PN space by correlating an internally generated PN sequence with different offset hypotheses until one or more pilot signals are located.
Other systems, such as W-CDMA systems, differentiate base stations using a unique PN code for each, known as a primary scrambling code. The W-CDMA standard defines two Gold code sequences for scrambling the downlink, one for the in-phase component (I) and another for the quadrature (Q). The I and Q PN sequences together are broadcast throughout the cell without data modulation. This broadcast is referred to as the common pilot channel (CPICH). The PN sequences generated are truncated to a length of 38,400 chips. The period of 38,400 chips is referred to as a radio frame. Each radio frame is divided into 15 equal sections referred to as slots.
It is possible to search for W-CDMA base stations in the manner described for IS-95 systems, described above. That is, the entire PN space can be searched offset by offset (38,400 of them) for each of the 512 primary codes. However, this is not practical due to the excessive amount of time such a search would require. Instead, the W-CDMA standard calls for base stations to transmit two additional synchronization channels, the primary and secondary synchronization channels, to assist the subscriber unit in searching efficiently. As a result, W-CDMA search can be performed in three steps, which will be detailed more fully below.
For initial acquisition, the three-step W-CDMA search provides a great performance increase, in terms of reduced search time, over the impractical alternative of searching the entire PN space for each scrambling code. When the primary scrambling codes of neighboring base stations are known, either of the two methods can be used to successfully perform handoff searching, but each poses certain drawbacks in terms of search time, identified in further detail below.
Search time is an important metric in determining the quality of a CDMA system. Decreased search time implies that searches can be done more frequently. As such, a subscriber unit can locate and access the best available cell more often, resulting in better signal transmission and reception, often at reduced transmission power levels by both the base station and the subscriber unit. This, in turn, increases the capacity of the CDMA system (either in terms of support for an increased number of users, or higher transmission rates, or both).
Decreased search time is also advantageous when a subscriber unit is in idle mode. In idle mode, a subscriber unit is not actively transmitting or receiving voice or data, but is periodically monitoring the system. In idle mode, the subscriber unit can remain in a low power state when it is not monitoring. Reduced search time allows the subscriber unit to spend less time monitoring, and more time in the low power state, thus reducing power consumption and increasing standby time.
The benefits of reduced search time are clear, and some issues associated with searching in asynchronous systems, such as W-CDMA, have just been highlighted, including handoff search. There is therefore a need in the art for improved search techniques for asynchronous systems, including handoff searching.
SUMMARY
Embodiments disclosed herein address the need for improved handoff searching in asynchronous systems such as W-CDMA. In one aspect, a two-step search procedure is used when a list of neighbor codes is known. In the first step, a received signal is correlated with a slot timing code to locate on or more pilots and the slot boundaries associated therewith. In the second step, the received signal is correlated with each of the list of codes at the slot boundaries identified with pilots in the first step to identify the pilot code and the frame timing associated with each pilot. Various other aspects of the invention are also presented. These aspects have the benefit of decreasing search time, which translates to increased acquisition speed, higher quality signal transmission, increased data throughput, decreased power, and improved overall system capacity.
The invention provides methods and system elements that implement various aspects, embodiments, and features of the invention, as described in further detail below.


REFERENCES:
patent: 5930366 (1999-07-01), Jamal et al.
patent: 5991330 (1999-11-01), Dahlman et al.
patent: 6101175 (2000-08-01), Schorman et al.
patent: 6356763 (2002-03-01), Kangas et al.
patent: 6480558 (2002-11-01), Ottosson et al.
patent: 6526039 (2003-02-01), Dahlman et al.
patent: 1009105 (2000-06-01), None
patent: 0101596 (2001-01-01), None
Wang, et al.,Cell Search Algorithms and Optimization in W-CDMA, VTC 2000 IEEE Vehicular Technology Conference, 51st, vol. 2 of 3, No. 51 (2000).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method & apparatus for W-CDMA handoff searching does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method & apparatus for W-CDMA handoff searching, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method & apparatus for W-CDMA handoff searching will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3365732

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.