Methanol synthesis

Chemistry: fischer-tropsch processes; or purification or recover – Plural zones each having a fischer-tropsch reaction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C518S700000, C518S702000, C518S711000

Reexamination Certificate

active

06433029

ABSTRACT:

This invention relates to methanol synthesis. Methanol is conventionally synthesised at elevated and pressure in a methanol synthesis loop where synthesis gas, containing hydrogen, carbon oxides, and, usually, some inerts such as nitrogen and methane, is passed over a copper catalyst at an elevated temperature, typically 200-300° C., and pressure, typically 40-150 bar abs., and then the product reacted gas is cooled, condensed methanol is separated and the unreacted gas is recycled to the synthesis reactor. Fresh synthesis gas, hereinafter termed make-up gas, is added to the loop at a suitable location, usually to the recycled unreacted gas before the latter is fed to the synthesis reactor. A purge is taken from the loop at a suitable point to avoid the build-up of inerts to an uneconomically high level. The make-up gas may be added to the loop before or after the separation step.
Methanol synthesis is an exothermic process and it is necessary to limit the amount of reaction occurring in a bed of catalyst and/or to cool the bed, to avoid overheating the catalyst. To this end, a variety of reactor types have been employed. For example it has been proposed to employ a reactor with means to inject cool quench gas (generally a mixture of make-up gas and unreacted recycle gas) into the catalyst bed or between beds. Examples of such quench bed reactors are described in GB 1105614, EP 0297474, EP 0359952 and U.S. Pat. No. 4,859,425. It has also been proposed to employ reactors having heat exchangers within the beds so that heat evolved by the reaction is transferred to a coolant. Thus in the arrangement described in U.S. Pat. No. 4,778,662 the synthesis reactor has coolant tubes which extend through at least the inlet part of the catalyst bed and open into the space above the inlet to the catalyst bed: the coolant is the mixture of recycled unreacted gas and make-up gas so that the reactants are heated to the desired inlet temperature by the evolved heat. In the arrangement described in GB 2046618 the catalyst is disposed as a single bed through which the reactants flow radially and heat exchange tubes are provided through which a coolant, e.g. pressurised boiling water, is circulated.
It is often desirable to increase the amount of methanol synthesised. In U.S. Pat. No. 5,252,609 and U.S. Pat. No. 5,631,302 methods are described wherein the make-up gas is subjected to a preliminary synthesis step before it is added to the synthesis loop. In the aforesaid U.S. Pat. No. 5,631,302 the second synthesis stage, i.e. that in the synthesis loop, is effected in heat exchange with boiling water, thereby producing steam which may be exported. In EP 0790226 an arrangement is described where there are two synthesis reactors in series in the loop; the first reactor being cooled by heat exchange with boiling water while the second is cooled by heat exchange with the mixture of make-up gas and recycled unreacted gas.
In the aforementioned arrangements wherein the coolant is boiling water, the reactor operates under essentially isothermal conditions and the temperature and pressure of the steam produced is largely dependent upon the temperature at which the reactants leave the synthesis reactor. In order to achieve a high conversion per pass, this temperature is desirably relatively low, for example in the range 200 to 250° C. As a result the temperature and pressure of the steam is such that the steam is of little utility elsewhere in the methanol plant.
The make-up gas is often produced by a steam reforming process wherein a hydrocarbon feedstock, such as natural gas, is reacted with steam at an elevated pressure, e.g. in the range 20 to 80 bar abs., and at an elevated temperature, e.g. in the range 700 to 1100° C., in the presence of a catalyst. This reforming reaction is strongly endothermic and at least part of the reforming reaction is generally operated with the catalyst disposed in tubes through which the feedstock/steam mixture passes while the tubes are heated externally by a suitable medium.
It is known, e.g. see U.S. Pat. No. 4,072,625, to recover heat from reacted methanol synthesis gas leaving a methanol synthesis reactor by heat exchange with water under pressure to give a stream of heated water which is used to provide at least some of the steam required for steam reforming by contacting the stream of hot water, preferably after further heating, directly with the hydrocarbon feedstock. Such direct contact of the hydrocarbon feedstock with hot water is herein termed saturation. We have realised that. instead of recovering the heat from the reacted synthesis gas after it has left the synthesis reactor, by using a reactor operated in heat exchange with water under such a pressure that the water does not boil, hot water useful for saturation can be obtained, while at the same time enabling an adequate temperature profile to be achieved in the synthesis reactor.
In the present invention, the synthesis loop comprises two or more synthesis stages in series with at least the final stage being effected in indirect heat exchange with water under sufficient pressure to prevent boiling, and the resultant heated pressurised water is used to supply at least some of the process steam required for the aforesaid reforming reaction by contacting the hydrocarbon feedstock with the pressurised heated water. It will be appreciated that since the water is contacted directly with the hydrocarbon feedstock, the pressure of the pressurised water is equal to or greater than that employed in the reforming reaction.
According to the present invention we provide a process wherein methanol is synthesised in a loop from a synthesis gas mixture comprising hydrogen and carbon oxides in at least two synthesis stages, synthesised methanol is separated, at least part of the unreacted synthesis gas is recycled to the first stage, and make-up gas is added to the loop, characterised in that in at least the final synthesis stage of the loop, the synthesis is effected in indirect heat exchange with water under sufficient pressure to prevent boiling, whereby a stream of heated pressurised water is produced, and the make-up gas is produced by a process including catalytically reacting a hydrocarbon feedstock with steam at an elevated temperature and at an elevated pressure equal to or less than the pressure of said stream of heated pressurised water and at least part of said steam is introduced by direct contact of said hydrocarbon feedstock with said stream of heated pressurised water.
In contrast to the process of the aforesaid EP 0790226 where the first stage is effected in indirect heat exchange with boiling water, in the present invention at least the final stage is effected in heat exchange with water under sufficient pressure to prevent boiling. The reactor used for synthesis in indirect heat exchange with pressurised water is herein termed a water-cooled reactor.
In its simplest form the synthesis loop has two stages of methanol synthesis with one or both stages being effected in a water-cooled reactor. The first stage is preferably effected in a quench reactor or a heat exchange reactor wherein the synthesis catalyst is cooled by transferring heat evolved by the synthesis reaction by heat exchange to the feed gas of that reactor, e.g. as described in the aforesaid U.S. Pat. No. 4,778,662. Where more than two stages are employed, it is again preferred that the first stage is effected in a quench reactor or a heat exchange reactor as aforesaid and at least the last of the subsequent stage or stages is effected in the water-cooled reactor.
Where, as is preferred, the first synthesis stage is not effected in a water-cooled reactor, it may be desirable that at least part of the make-up gas is added to the loop after the synthesis gas has been subjected to the first synthesis stage and before it is subjected to the synthesis stage employing the water-cooled reactor. One advantage of this arrangement is that the throughput may also be increased by operating the loop at a lower circulation ratio, which is defined herein as

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methanol synthesis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methanol synthesis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methanol synthesis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2932311

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.