Surgery – Diagnostic testing
Reexamination Certificate
2000-03-27
2003-06-10
Hindenburg, Max F. (Department: 3736)
Surgery
Diagnostic testing
C600S369000, C379S106070, C128S904000
Reexamination Certificate
active
06575900
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to medical methods and devices. More particularly, the present invention relates to diagnostic devices that can be linked to remote data collection and evaluation centers.
Many clinical conditions require monitoring of the status of certain patent metabolic or biochemical parameters. Often, a single reading is insufficient for optimal medical care. Rather, a series of readings over time, combined with other elements of the patient's activities and medical history, are preferable. Readings may be plotted versus time, and trends spotted. Aberrant readings may be understood as being a result of patient non-compliance with a set medical regimen, an unforeseen but understandable change in the patient's metabolic status. Trends and aberrant readings may then be judged on the basis of medication and treatment algorithms appropriate to the patient's condition, and treatment programs appropriately adjusted.
Although some medical conditions, such as elevated cholesterol levels, vary on a long enough time scale so that patients may be appropriately monitored and treated by infrequent visits to medical clinics, other medical conditions, such as diabetes, need for oral anticoagulants, blood pressure or heart conditions, etc. require such a high frequency of monitoring as to make clinic monitoring problematic. For medical conditions where high frequency monitoring is indicated, current trends in medical technology are to provide easy to use, portable, monitoring units (meters) for use in a patient's home environment.
For the above reasons, it is highly useful if the meter has a capability to store data in an on-board meter database, and the ability to recall this stored data whenever the user so desires. Such on-board meter databases have become standard in the diagnostics industry.
Although for an increasing number of analytes, modem technology makes it feasible to perform accurate monitoring in a non-clinical (home) environment, the problem of interpreting the results persists. The algorithms used to adjust patient treatment are often complex, and may require experienced medical judgment. This will obviously not be constantly available in a home environment. Thus methods of conveying data obtained in a non-clinical setting, to a central location where clinical judgment is available, either in the form of preset algorithms, or by on-site clinicians, are of considerable practical interest. Such methods are commonly referred to as telemetry or telemedicine.
A variety of telemedicine methods have been described and practiced. The most common methodologies proposed are schemes for first collecting and storing data using an instrument on-site with the patient. On an occasional basis, telecommunications links are established with clinicians or automated instrumentation at a central, decision making, location, and the stored data is then transferred. At the central location, this data is then processed. Medical opinions may then be relayed to where they are most useful.
Diabetics are one class of patients in need of such capability. For example, as taught by U.S. Pat. No. 4,731,726; diabetic patients may monitor their blood glucose levels with a blood glucose meter that contains an internal database of past readings, and in conjunction with remote communications linkages, work with clinicians to optimally manage their disease. Similarly, U.S. Pat. No. 4,712,562 discloses methods for the remote monitoring of blood pressure.
U.S. Pat. No. 5,704,366 teaches methods for interfacing a patient side system with a remote central database system, using device specific ID codes (essentially a meter serial number) that uniquely identifies a particular remote interface device.
U.S. Pat. No. 5,704,366 teaches methods for rearranging a database of readings, reserved for the meter's internal data storage and recall purposes, in order to facilitate their transmission over a communications link.
U.S. Pat. No. 5,704,366 teaches methods in which the micro-controller on the patient-side meter is coupled to a patient-side telecommunication interface that can transmit analog signals to a remote computer.
U.S. Pat. No. 5,724,580 teaches methods of automatically generating management and prognosis reports and recommending therapy for a patient based on analysis of the downloaded data.
U.S. Pat. No. 3,820,028 teaches digital methods of DTMF decoding.
U.S. Pat. No. 4,484,035 teaches digital methods of DTMF decoding.
U.S. Pat. No. 4,087,638 teaches a DTMF Communication system.
U.S. Pat. No. 5,408,529 teaches a DTMF detector operable in the presence of speech or background noise.
U.S. Pat. No. 5,408,520 teaches conditional methods of switching between a land line telecommunications link, and a cellular communications link, involving the standard AT modem command set, depending upon battery status.
Of the various classes of patients, patients on oral anticoagulants, such as warfarin, have a particular need for a simple, easy to use system that combines accurate diagnostics and telemedicine capability. Such patients may include individuals with deep vein thrombosis, atrial fibrillation, artificial heart valves, myocardial infarction, hematologic disorders such as protein “S” or “C” deficiency, or activated protein C resistance, and many other medical indications. Such patients must maintain their blood coagulation status, monitored by prothrombin time testing, within a narrow therapeutic window. Too little anticoaguation can result in stroke or pulmonary embolism, while too much anticoaguation can result in bleeding or hemorrhage.
Warfarin is a vitamin K antagonist, and is absorbed by the gastrointestinal system to a variable amount depending upon the patient's diet or gastrointestinal status. Patient response to any given dose of warfarin is highly variable between patients. Warfarin's pharmokinetics are such that the effective half-life of the drug is several days. Thus prothrombin-time trend analysis, in conjunction with clinical inquiry as to changes in a patient's diet or general condition, play an important role in managing this drug.
A number of different simple instruments to enable easy assessment of prothrombin time levels in a non-clinical setting have been proposed. For example, U.S. Pat. No. 4,849,340 teaches small disposable cartridge chambers containing dry thromboplastin and magnetic microparticles. The oscillation of the magnetic particles induced by a magnetic field is observed by optical means. Blood is introduced to the chamber, and the length of time required for the thromboplastin mediated blood coagulation to change the optical oscillation signature is proportional to the prothrombin time of the blood sample.
U.S. Pat. No. 5,300,779 teaches a small disposable cartridge chamber containing dry thromboplastin. Blood is introduced to the chamber, and is induced to migrate by capillary action. The movement of blood is observed by laser light scattering techniques. The time elapsed between the time that blood is introduced to the chamber, and the time required for thromboplastin mediated blood coagulation to change the laser light scattering signature, is proportional to the prothrombin time of the blood sample.
U.S. Pat. No. 5,302,348 teaches an alternate type of small disposable cartridge containing capillary tubes and dry thromboplastin. Blood is introduced to the capillary tubes, and the blood induced to move by variations in air pressure. This movement is also observed by optical means. The time elapsed between the application of blood, and the onset of resistance to movement, is proportional to the prothrombin time of the sample.
U.S. Pat. Nos. 5,344,754; 5,418,131; 5,418,143; 5,580,744; incorporated herein by reference, teach a dry reagent “test strip” containing thromboplastin and a fluorescent thrombin substrate reporter molecule. Blood is applied to the test strip. The thromboplastin interacts with the blood sample, producing thrombin, which activates the fluorescent reporter molecule. The time elapsed
Downey Thomas D.
Zweig Stephen E.
Astorino Michael
Beckman Coulter Inc.
Hill D. David
Hindenburg Max F.
May William H.
LandOfFree
Meter with integrated database and simplified telemedicine... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Meter with integrated database and simplified telemedicine..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Meter with integrated database and simplified telemedicine... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3087378