Metathesis polymerized olefin composites including sized...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S172000, C526S281000, C526S283000, C524S404000, C524S462000, C524S494000, C524S495000, C523S210000, C523S212000, C523S214000, C523S215000, C523S217000, C523S411000

Reexamination Certificate

active

06323296

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to articles made of reinforced metathesis polymerized olefins and cycloolefins, incorporating reinforcing materials, and methods for producing the same. More particularly, the invention relates to reinforced metathesis polymerized olefins and cycloolefins that are polymerized in the presence of a reinforcing material coated with a coupling or sizing agent.
BACKGROUND PRIOR ART
Numerous polymers of olefins, especially polymers of cycloolefins, produced through metathesis polymerization reactions using a metathiesis catalyst are technologically and commercially important materials. Especially important are polymers of cycloolefins that are produced through Ring Opening Metathesis Polymerization (ROMP) reactions. Many such materials are tough and rigid, and have excellent chemical resistance. However, for many high performance applications, even higher stiffness and strength are desirable. In such applications, it is desirable to provide for reinforcement of the polyolefin structure.
Fiber reinforced polymer structures, generally, are known in the polymer art. Fiber reinforcement of polymers such as poly-dicyclopentadiene or other polymers of strained ring cycloolefins has been taught by Leach in U.S. Pat. No. 4,708,969. Improving the physical properties of a glass composite polydicyclopentadiene by heat treatment; is taught by Silver in U.S. Pat. No. 4,902,560. A reinforced norbornene polymer matrix including a glass mat reinforcement is taught by Sugawara et al. in U.S. Pat. No. 5,063,103.
However, it has been a problem to provide for a good interface or good adhesion between the reinforcement materials and polyolefins produced through metathesis polymerization reactions. Due to the poor interface between the reinforcement material anti the polyolefin, stiffness and strength are lost. Additionally, if such composite materials are exposed to fluids during use, the fluids “wick” along the surface of the reinforcement material, due to the poor adhesion, and eventually wet the entire reinforcement material. The presence of a fluid further adversely affects the adherence of the polyolefin to the reinforcement material, and causes further loss of stiffness and strength. The wicking can cause the resulting composite material to be permeable to liquid, making it not feasible for use with liquids.
Coupling agents, also referred to as sizing agents, are generally known in the polymer art to improve adhesion between reinforcement materials and polymer matrixes. However, it is known that coupling agents, and other impurities, adversely affect traditional metathesis catalysts, and are not usable with such catalysts. U.S. Pat. No. 4,902,560, specifically teaches that in dealing with a metathesis produced reinforced polymer matrix, the reinforcing agent should be “substantially completely free of surface coatings” and that “physical properties of structures prepared with glass containing surface treatments such as, e.g., coupling or sizing agents, deteriorate upon post-cure . . . ” See U.S. Pat. No. 4,902,560, Column 3, Lines 51-58.
U.S. Sugawara, et al. U.S. Pat. No. 5,063,103, teaches a method of coating a sized glass reinforcement mat with a hydrocarbon. A nor-bor-nene polymer is then polymerized with a metathesis catalyst system in the presence of the hydrocarbon coated glass mat to form a reinforced polymer structure. However, the metathesis catalyst never comes into contact with the sizing agent. The hydrocarbon binder layer covers the sizing agent such that it does not adversely affect the metathesis catalyst. The additional step of coating the sized glass mat prior to exposing it to the catalyst is expensive, time consuming, and burdensome.
It is desirable to provide a reinforced composite of a metathesis polymerized olefin polymer, especially a ROMP reaction polymerized cycloolefin polymer, and a process for making the same, wherein the polymer is polymerized with a metathesis catalyst in the presence of a reinforcing material having a coupling agent thereon, and the coupling agent provides for an improved interface between the polymer and the reinforcing material without significantly adversely affecting the polymerization reaction.
SUMMARY OF THE INVENTION
The present invention addresses these needs by using coupling agents which render a reinforcing material more compatible for a better interface with an olefin polymer that is polymerized through a metathesis polymerization reaction, but do not adversely poison or otherwise adversely affect the metalhesis catalyst or the polymerization reaction.
More particularly, a ruthenium or osmium carbene complex catalyst is used as the catalyst for the metathesis polymerization of olefin monomers, and the polymerization reaction takes place with the catalyst/monomer mixture in direct contact with a reinforcement material coated with a suitable coupling agent, and the coupling agent has minimal poisoning or other adverse affect on the catalyst.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description and claims.
Before embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of the composition and concentration of components set forth in the following description. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
DETAILED DESCRIPTION OF AN EMBODIMENT
The invention involves polymerization of olefins through olefin metathesis reactions, especially Ring Opening Metathesis Polymerization (ROMP) reactions, with a ruthenium or osmium carbene complex metathesis catalyst in the presence of a reinforcing material coated, or sized, with a coupling agent to produce polyolefinic composite materials incorporating the sized reinforcement material. The coupling agent provides for better adhesion between the reinforcement material and the polyolefin.
Suitable ruthenium and osmium carbene complex catalysts, the methods of synthesizing such catalysts, and suitable olefin monomers as well as the methods for performing and controlling the polymerization reaction, are disclosed in the following patents and patent application, all of which are incorporated herein by reference: U.S. Pat. Nos. 5,312,940 and 5,342,909; WO 97/20865.
Catalysts:
Generally suitable catalysts are ruthenium and osilum carbene complex catalysts disclosed in the above cited references.
The preferred ruthenium and osmium carbenie complex catalysts include those which are stable in the presence of a variety of functional groups including hycdroxyl, thiol, thioetlher, ketone, aldehyde, ester, ether, amine, imine, amide, nitro, carboxylic acid, disulfide, carbonate, isocyanate, carbodiimide, carboalkoxy, peroxy, anhydride, carbamate, and halogen. When the catalysts are stable in the presence of these groups, the starting monomers, impurities in the monomer, the coupling agents, any substituent groups on the catalyst, and other additives may include one or more of the above listed groups without deactivating the catalysts.
The catalyst preferably includes a ruthenium or osmium metal center that is in a +2 oxidation state, has an electron count of 16, and is pentacoordinated. These ruthenium or osmium carbene complex catalysts may be represented by the formula:
where:
M is O or Ru;
R and R
1
may be the same or different and may be hydrogen or a substituent group which may be C
2
-C
20
alkenyl, C
2
-C
20
alkynyl, C
1
-C
20
alkyl, aryl, C
1
-C
20
carboxylate, C
1
-C
20
alkoxy, C
2
-C
20
alkenyloxy, C
2
-C
20
alkynyloxy, aryloxy, C
2
-C
20
alkoxycarbonyl, C
1
-C
20
alkylthio, C
1
-C
20
alkylsulfonyl and C
1
-C
20
alkylsulfiniyl. Optionally, the substituent group may be substituted with one or more groups selected from C
1
-C
5
alkyl, lhalide, C
1
-C
5
alk

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metathesis polymerized olefin composites including sized... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metathesis polymerized olefin composites including sized..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metathesis polymerized olefin composites including sized... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2613581

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.