Metal-resis bond grindstone and method for manufacturing the...

Abrasive tool making process – material – or composition – With synthetic resin

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C051S304000, C051S293000, C051S307000

Reexamination Certificate

active

06203589

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a metal-resin bond grindstone for use in ELID grinding, and a method for manufacturing the same.
2. Description of the Related Art
Japanese Patent Application Laid-Open No. 1-188266 by the same applicant as in the present application discloses a method and an apparatus for carrying out electrolytic dressing on a conductive grindstone, i.e., dressing in an electrolytic manner a metal bond grindstone, to which a voltage is applied, such as a cast iron fiber bond diamond grindstone or a similar conductive grindstone. The publication reports a success in performing specular grinding on electronic semiconductor materials such as silicon. Besides, the present applicant has developed and announced an apparatus and a method called the Electrolytic In-process Dressing method (hereinafter referred to as the ELID method)(RIKEN Symposium “The Latest Technological Trend of Specular Grinding” held on Mar. 3rd, 1991).
The ELID method uses an apparatus which comprises a grindstone having a contact surface with a work-piece, electrodes facing the grindstone with a distance therebetween, nozzles for allowing a conductive liquid to flow between the grindstone and the electrodes, and a voltage application device (comprising a power supply and a feeder circuit) for applying a voltage between the grindstone and the electrodes, and the voltage is applied between the grindstone and the electrodes while the conductive liquid is allowed to flow between the grindstone and the electrodes, thereby performing the electrolytic dressing on the grindstone.
Since the ELID method can use fine abrasive grains without loading by virtue of the electrolytic dressing, it can thus give an extremely good worked surface such as a mirror surface by the use of the finer abrasive grains. The ELID method can therefore maintain an excellent cutting function of the grindstone ranging from high-performance grinding through mirror finish grinding, and thus the application of the ELID method to various fields of the grinding can be expected.
The above-mentioned ELID method, however, uses an inelastic hard metal as a grindstone bond, so that there are problems of “chipping” of a work-piece during the grinding and “scratches” of the work-piece by the chips. Accordingly, even by the above-mentioned ELID grinding, an obtained mirror surface merely has a Rmax of about 18 to 20, and it has a problem that the higher quality mirror surface cannot be obtained.
Therefore, to obtain the higher quality mirror surface, the conventional methods must use another method such as polishing together, but in such a case, there are problems, such as that the high-performance grinding effect of the ELID grinding is reduced and much time is taken to complete the whole processing.
To solve the above problems, the present inventors have earlier contrived a method and an apparatus in which abrasive grains are mixed with a bonding material comprising metal powder and a resin; the mixture is heated and melted to form a conductive grindstone; and the thus formed conductive grindstone is used to carry out ELID grinding (see Japanese Patent Application Laid-Open No. 7-285071). By this method and the related apparatus, it has been made possible to obtain a high-quality mirror surface with an Rmax value of about 13-15 nm which is not liable to have chippings or scratches.
The above-mentioned conductive grindstone (hereinafter referred to as the metal-resin bond grindstone) which mixes a grindstone and a bonding material comprising metal powder and a resin, gives higher quality of mirror surfaces as the grain diameter of the metal powder is smaller. If, however, the grain diameter of the metal powder is reduced to about 1 &mgr;m, the thus made metal-resin bond grindstone has higher electric resistivity and so loses a conductivity essential for ELID grinding, thus making the grinding impossible. With this problem, the ELID methods using the conventional grindstones cannot obtain high quality mirror surfaces with an Rmax value of 10 nm or less.
SUMMARY OF THE INVENTION
The present invention has been worked out to solve the above-mentioned problems. That is, the object of the present invention is to provide a metal-resin bond grindstone and a method for manufacturing the same that has conductivity fit for the ELID grinding and includes fine metal powder with an average grain diameter of approximately 1 &mgr;m.
The present invention provides a conductive metal-resin bond grindstone characterized in that it comprises metal powder, a resin, and abrasive grains as well as a solid reducing agent which reduces the above-mentioned metal powder.
The present invention also (a) mixes metal powder, a resin, abrasive grains, and a solid reducing agent at a temperature between the normal (room) temperature and the melting point of the reducing agent, both inclusive, to form a mixture and then (b) molds and bakes the mixture at a temperature between the above-mentioned melting point of the reducing agent and the melting point of the metal powder.
According to the above-mentioned grindstone and the manufacturing method of the present invention, by virtue of a solid reducing agent included to reduce metal powder, the mixture can be molded and baked at a temperature of the melting point of the reducing agent through that of the metal powder, to reduce the metal powder during the molding and baking process, thus giving conductivity to the finished grindstone.
According to a preferred embodiment of the present invention, the above-mentioned solid reducing agent is a fatty acid. Also, the above-mentioned fatty acid is preferably stearic acid having a volume ratio of 5 to 20% with respect to the metal powder.
The fatty acid, as can be seen from its chemical formula, has an active carboxyl group containing oxygen atoms in its molecule, and so when it is heated at its melting point or higher and liquefied, an oxide layer having a low conductivity on the surface of the metal powder can be dissolved and removed, and as a result, a high conductivity can be obtained between the particles of the metal powder.
This effect that the fatty acid dissolves and removes the oxide layer on the surfaces of the fine metal powder particles to expose the surfaces of the metal will be called reduction in this specification. Also, the experiments proved that by using especially stearic acid having a volume ratio of 5 to 20% with respect to the metal powder, is possible to give conductivity (low electric resistivity) fit for ELID grinding and to obtain high quality mirror surfaces with an Rmax value of about 3 nm or less.
The other objects and the advantages of the present invention will be clear from the following description with reference to the appended drawings.


REFERENCES:
patent: 3779727 (1973-12-01), Sigui et al.
patent: 3868232 (1975-02-01), Sioui et al.
patent: 3868233 (1975-02-01), Carver et al.
patent: 4042347 (1977-08-01), Sioui
patent: 5611827 (1997-03-01), Hammarstrom et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metal-resis bond grindstone and method for manufacturing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metal-resis bond grindstone and method for manufacturing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal-resis bond grindstone and method for manufacturing the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2503288

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.