Metal hydride based air cooling method and apparatus

Refrigeration – Refrigeration producer – Sorbent type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S106000

Reexamination Certificate

active

06722154

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an apparatus and method that dehumidifies and cools air. More specifically, the present invention discloses an apparatus that preconditions air by utilizing the thermal swing created when hydrogen gas is transferred between hydrogen storage materials to cool and dehumidify incoming or internally re-circulated air and reduce energy costs.
BACKGROUND OF THE INVENTION
Hydrogen is the “ultimate fuel” for the next millennium, and, it is inexhaustible. Hydrogen is the most plentiful element in the universe and can provide an inexhaustible, clean source of energy for our planet, which can be produced by various processes, which include the splitting of water into hydrogen and oxygen. The hydrogen can be stored and transported in solid-state form.
In the past considerable attention has been given to the use of hydrogen as a fuel or fuel supplement. While the world's oil reserves are depletable, the supply of hydrogen remains virtually unlimited. Hydrogen can be produced from coal, natural gas and other hydrocarbons, or formed by the electrolysis of water, preferably via energy from the sun which is composed mainly of hydrogen and can, itself, be thought of as a giant hydrogen “furnace”. Moreover hydrogen can be produced without the use of fossil fuels, such as by the electrolysis of water using nuclear or solar energy, or any other form of economical energy (e.g., wind, waves, geothermal, etc.). Furthermore, hydrogen is an inherently low cost fuel. Hydrogen has the highest density of energy per unit weight of any chemical fuel and is essentially non-polluting since the main by-product of “burning” hydrogen is water. Thus, hydrogen can be a means of solving many of the world's energy related problems, such as climate change, pollution, strategic dependency on oil, etc., as well as providing a means of helping developing nations to achieve sustainable growth. However, hydrogen storage principles have not been applied to a preconditioner unit that dehumidifies and cools air and reduces energy consumption.
In the past two decades, heating, ventilation, and air conditioning (HVAC) systems for residential, commercial, and industrial buildings have experienced massive changes. These advanced HVAC systems are currently marketed and used in newly constructed buildings and homes, saving customers billions of dollars. However, there are still tens of millions of existing residential buildings equipped with original, much less energy efficient (up to 30%), HVAC systems. The wasted energy cost that could be recovered from these existing systems through incorporation of energy efficient aftermarket retro-fit kits is estimated at ~$15 billion. Significant reductions of carbon dioxide (CO
2
) and other pollutants, like nitrous and sulfur oxides (NO
x
and SO
2
), would also be realized through the development and mass adoption of Integrated Systems for Energy-Efficient Space Conditioning. Space air conditioning is a vital component of residential HVAC systems and should be targeted to achieve the greatest incremental energy savings.
A study demonstrated that the energy efficiency could be 20 to 30% higher for air conditioning systems that use active desiccant dehumidification in large HVAC systems for commercial or industrial buildings. It was also shown, however, that these systems are most suitable for large buildings and niche markets, where humidity control and outdoor fresh air inflow are very important, such as: hospitals, nursing homes and assisted living quarters, hotels and research facilities. Hospitals and other special R&D facilities need to introduce large amount of fresh air into the buildings, even as the outdoor air temperature is higher than that of the indoor; the HVAC system with the active desiccant demonstrates significant improvement in efficiency. However, this technology is not cost effective for residential markets due to the high capital cost of the desiccant equipment and less energy saving for smaller scale of air-cooling. Therefore, it is perceived by consumers that the energy saving by the active desiccant HVAC system will not offset the upfront cost of the installation.
The majority of residential air conditioning systems are not equipped with separate dehumidification and ventilation systems. The very common case is that homeowners operate a stand-alone dehumidifier in the basement or individual rooms. This type of independent compressor based dehumidifier reduces the humidity of indoor air, but rejects heat into the dried air. The heat that needs to be removed includes the latent enthalpy of condensed water and compressor friction. Existing dehumidifiers reduce the amount of water, but since the heat from the dehumidifier raises the indoor air temperature, more electrical energy needs to be used for the air conditioner to pump the heat out. Therefore, this practice is a very inefficient way to achieve comfort.
As a result of the forgoing, there exists a need in the art for an energy efficient apparatus and method to reduce the energy load on existing AC systems and operate independent of AC systems. To date, no one has applied the hydrogen absorption/desorption capabilities of metal hydrides to dehumidify and cools air. The present invention discloses an energy efficient metal hydride based apparatus and method for reducing the relative humidity of air that may be used to precondition air entering an AC system and utilizing waste heat from the AC system. Additionally, the present invention discloses an energy efficient metal hydride based apparatus and method for reducing the relative humidity of air that may be used independent of an AC system.
SUMMARY OF THE INVENTION
The present invention discloses a novel apparatus that provides separate dehumidification and ventilation that may be used to increase the energy efficiency of residential air conditioning systems, in addition to improving indoor air quality and dwelling comfort. The apparatus and method dehumidifies and cools the incoming air by utilizing the thermal swing created when hydrogen is shuttled between metal hydride alloys to cool and dehumidify incoming or internally re-circulated air. The release of hydrogen from a metal hydride matrix is an endothermic process. The dehydriding process absorbs the heat from the surroundings, such as entering or recirculating air. If the thermal energy latent in the incoming air can be used for the dehydriding process, the incoming air temperature will drop. This drop in the temperature can be used to reduce the water content and thus “pre-condition” the incoming air. This pre-conditioned air requires less energy to cool (“air condition”) and because the rate of hydrogen desorption can be regulated, it is possible to actively control humidity levels. This controlled process is powered, preferably by the waste heat of the HVAC system and, thus, significantly improves the efficiency of the overall system. However, the present invention may operate independent of an air conditioning unit. In that embodiment, heat is provided to the system by a different means, such as a solar powered heater.
The metal hydride based air preconditioner of the present invention is fundamentally different from a conventional compressor dehumidifier, and active desiccant based systems. The metal hydride based air preconditioner of the present invention operates by recovering the waste heat from the condenser of the air conditioner. The metal hydride based air preconditioner of the present invention has less moving components and much more energy saving. Since this system is a totally sealed system with no external supply of hydrogen, it is totally safe and reliable. The energy saving is substantial. Not only does it recovers waste heat for the cooling of house air, but it also realizes pre-dehumidification of humid air, which enhances the cooling efficiency of the existing air conditioning system. The installation of an outside air economizer to an existing enclosed area, such as a residential building, improves the indoor air qua

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metal hydride based air cooling method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metal hydride based air cooling method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal hydride based air cooling method and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3195670

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.