Stock material or miscellaneous articles – All metal or with adjacent metals – Composite; i.e. – plural – adjacent – spatially distinct metal...
Reexamination Certificate
2002-03-27
2003-09-02
Jones, Deborah (Department: 1775)
Stock material or miscellaneous articles
All metal or with adjacent metals
Composite; i.e., plural, adjacent, spatially distinct metal...
C428S627000, C428S629000, C428S469000, C428S698000, C228S122100, C228S124500
Reexamination Certificate
active
06613450
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a metal/ceramic bonding article having a ceramic substrate and a metal plate which is bonded to the ceramic substrate via a brazing filler metal. More specifically, the invention relates to a metal/ceramic bonding article on which parts, such as semiconductor parts, are mounted and which is used for a power module or a Peltier element module.
2. Description of the Prior Art
In a typical method for producing a ceramic circuit board for a power module or for mounting a semiconductor thereon, a metal plate and a ceramic substrate are first bonded to each other For example, there is industrially utilized the direct bonding method for arranging a copper plate on a ceramic substrate so as to allow the copper plate to directly contact the ceramic substrate and for heating the copper plate and the ceramic substrate in an inert gas to bond the ceramic substrate and the copper plate to each other. There is also industrially utilized the brazing and soldering method for arranging a copper plate on a ceramic substrate via a brazing filler metal containing an active metal, such as Ti, Zr or Hf, and for heating them in a vacuum to bond the ceramic substrate and the copper plate to each other. In the brazing and soldering method, the active metal concerns the bonding of the ceramic substrate to the metal plate, and the ceramic substrate reacts with the brazing filler metal to form a reaction product. It is generally considered that a brazing filler metal reacts with a ceramic substrate of an oxide, such as Al
2
O
3
, to form an oxide of an active metal, reacts with a ceramic substrate of a non-oxide, such as AlN or Si
3
N
4
, to form a nitride of an active metal, and reacts with a ceramic substrate of a carbide, such as SiC, to form a carbide of an active metal, so that the product bonds the ceramic substrate to the copper plate. That is, the brazing filler metal layer after bonding comprises a layer mainly containing the metal, and a layer mainly containing an interface product of the interface between the brazing filler metal and the ceramic substrate.
As a method for forming a predetermined circuit shape by patterning after bonding a metal plate, such as a copper plate, for a circuit or radiation, there is the etching method also utilized for a printed circuit board or the like. This method is widely utilized since it is easy to obtain a fine pattern and it is possible to relatively simply cope with the change of a circuit design. In this method, for example, a mixed solution of iron chloride or copper chloride, hydrochloric acid and hydrogen peroxide is usually used as an etchant for a metal plate, such as a copper plate. In the case of the above described direct bonding method, this etchant can carry out etching and patterning without causing problems since it is possible to ignore reaction products. However, in the case of the brazing and soldering method, this etchant can dissolve the metal plate, but it can not dissolve the brazing filler metal and a reaction product of the brazing filler metal with the ceramic substrate (the general term for the brazing filler metal and the reaction product will be hereinafter referred to as a “brazing filler metal and so forth”), so that the brazing filler metal and so forth remain between circuit patterns and/or on the edge face of the substrate. Since the brazing filler metal and so forth are conductors, it is not possible to satisfy basic characteristics of a circuit board to isolate the circuit patterns from each other and/or the surface and reverse of the board from each other. As a method for removing the brazing filler metal and so forth, there is known a method for using hydrofluoric acid alone or a mixed acid of hydrofluoric acid and at least one inorganic acid selected from the group consisting of nitric acid, sulfuric acid and hydrochloric acid, or using a solution containing aqua regia, sodium hydroxide and/or potassium hydroxide, to treat and remove the brazing filler metal and so forth (see Japanese Patent No. 2,594,475). There is also known a method for treating the brazing filler metal and so forth with a solution containing a hydrogen halide and/or an ammonium halide, and then, treating them with a solution containing an inorganic acid and hydrogen peroxide, to remove the brazing filler metal and so forth (see Japanese Publication No. 7-36467).
On the metal circuit portion of a metal/ceramic bonding substrate patterned by the above described processes, nickel plating, nickel alloy plating, gold plating or preservation is carried out in accordance with its purpose.
Moreover, chip parts, such as semiconductor parts, are mounted thereon by soldering or the like to be used as a power module or a Peltier element module.
In recent years, power modules and Peltier element modules are used in severer environment, and parts used for them are required to have high reliability. In particular, parts used as automotive parts or used outdoors are required to improve thermal shock resistance. On the other hand, for example, in some of metal/ceramic bonding substrates wherein a metal is bonded to a ceramic substrate via a brazing filler metal, characteristics are further improved by devising the sectional shape of the edge portions of a circuit pattern.
In order to enhance reliability against thermal shock and so forth by means of a brazing filler metal, it is known that protrusion of the brazing filler metal from edge portions of a metal plate is effective in relaxation of the thermal stress caused by the difference in coefficient of thermal expansion between metal and ceramic in the bonding of metal to ceramic. For example, Japanese Patent Laid-Open No. 10-326949 has proposed a substrate having a structure wherein the difference between the dimensions of the bottom and top faces of the peripheral edge portion of a metal circuit plate is in the range of from 50 &mgr;m to 100 &mgr;m (this difference is the distance between a plane perpendicular to the principal plane of a metal plate at one end of the bottom face of the metal plate and a plane perpendicular to the principal plane of the metal plate at one end of the top face of the metal plate on the same side as the one end of the bottom face of the metal plate, i.e., the length shown by L
1
in
FIG. 5
(it is assumed that a case where the area of the bottom face is greater than the area of the top face is positive (+)), and this distance will be hereinafter referred to as a “skirt spreading length”), and the length of a brazing filler metal protruding from the interface of the metal plate and the brazing filler metal bonded thereto (the length shown by L
2
in FIG.
5
), which will be hereinafter referred to as a “brazing filler metal protruding length”, is in the range of from −50 &mgr;m to +30 &mgr;m. in addition, Japanese Patent 2,797,011 has proposed a substrate having a structure wherein a brazing filler metal protruding length from the interface between a metal plate and a brazing filler metal bonded thereto is 250 &mgr;m or more.
However, even if a brazing filler metal protruding length from the interface between a metal plate and a brazing filler metal bonded thereto is in the range of from −50 &mgr;m to +30 &mgr;m, it is not possible to obtain thermal shock resistance sufficient for market's demands. If a brazing filler metal protruding length from the interface between a metal plate and a brazing filler metal bonded thereto is 250 &mgr;m or more, it is possible to obtain sufficiently high thermal shock resistance. However, in the market trend remarkably emphasizing compactness and flexibility in recent years, if the brazing filler metal protruding length is so long, the outside dimension of a substrate is difficult to be allowable in design, so that it is required to provide thermal shock resistance standing comparison with that in the case of a protruding length of 250 &mgr;m even if the outside dimension is smaller.
SUMMARY OF THE INVENTION
It is therefor
Kimura Masami
Nakamura Jyunji
Namioka Makoto
Tsukaguchi Nobuyoshi
Wada Masahiko
Bachman & LaPointe P.C.
Dowa Mining Co. Ltd.
Jones Deborah
Stein Stephen
LandOfFree
Metal/ceramic bonding article does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Metal/ceramic bonding article, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal/ceramic bonding article will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3048470