Metal-carbon composite powders, methods for producing...

Plastic and nonmetallic article shaping or treating: processes – Formation of solid particulate material directly from molten... – By vibration or agitation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S013000, C075S335000, C075S338000

Reexamination Certificate

active

06780350

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to metal-carbon composite powders and to methods for producing such powders, as well as products and devices incorporating the composite powders. The powders are preferably produced by a spray conversion process.
2. Description of Related Art
Many product applications require metal-carbon composite powders. Such composite powders should have one or more of the following properties: high purity; controlled crystallinity; small average particle size; narrow particle size distribution; spherical particle morphology; controlled surface chemistry; controlled surface area; and little or no agglomeration of particles. Examples of metal-carbon composite powders requiring such characteristics include, but are not limited to, those useful in electrocatalyst applications such as fuel cells and batteries, as well as in conductive pastes and inks.
With the advent of portable and hand-held electronic devices and an increasing demand for electric automobiles due to the increased strain on natural resources there is a need for rapid development of high performance, economical power systems. Such power systems require improved means for both energy storage, achieved by use of batteries, and energy generation, achieved by use of fuel cells. Batteries can be subdivided into primary (non-rechargeable) and secondary (rechargeable) batteries.
Fuel cells are electrochemical devices which are capable of converting the energy of a chemical reaction into electrical energy. The electrical energy is produced without combustion and creates virtually no pollution. Fuel cells are unlike batteries because fuel cells convert chemical energy to electrical energy as the chemical reactants are continuously delivered to the fuel cell. When the fuel cell is off, it has zero electrical potential. As a result, fuel cells are typically used to produce a continuous source of electrical energy and compete with other forms of continuous electrical energy production such as the combustion engine, nuclear power and coal-fired power stations. Different types of fuel cells are categorized by the electrolyte used in the fuel cell. The five main types of fuel cells are alkaline, molten carbonate, phosphoric acid, solid oxide and proton exchange membrane (PEM) or solid polymer fuel cells.
In fuel cells, gases are often used as a source of chemical energy which is converted to electrical energy. One of the critical requirements for these energy devices is the efficient catalytic conversion of the reactants to electrical energy. A significant obstacle to the wide-scale commercialization of such devices is the need for superior electrocatalyst materials for this conversion process.
A PEM fuel cell stack is comprised of hundreds of membrane electrode assemblies (MEA's). An MEA includes a cathode and anode, each constructed from, for example, carbon cloth. The anode and cathode sandwich a proton exchange membrane which has a catalyst layer on each side of the membrane. Power is generated when hydrogen is fed into the anode and oxygen (air) is fed into the cathode. In a reaction catalyzed by a platinum-based catalyst in the catalyst layer, the hydrogen ionizes to form protons and electrons. The protons are transported through the proton exchange membrane to a catalyst layer on the opposite side of the membrane where another catalyst, typically platinum or a platinum alloy, catalyzes the reaction of the protons with oxygen to form water.
Anode: 2H
2
→4H
+
+4
e

Cathode: 4H
+
+4
e

+O
2
→2H
2
O
Overall: 2H
2
+O
2
→2H
2
O
The electrons formed at the anode are routed to the cathode through an electrical circuit which provides the electrical power.
The critical issues that must be addressed for the successful commercialization of fuel cells are cell cost, cell performance and operating lifetime. In terms of fuel cell costs, current fuel cell stacks employ MEA's containing unsupported platinum black electrocatalysts with a loading of about 4 milligrams of platinum per square centimeter on each of the anode and cathode. When this loading is compared to a typical cell performance of 0.42 watts per square centimeter, then 19 grams of platinum per kilowatt is required. It is clear that a significant cost reduction in the electrocatalyst is necessary for these cells to become economically viable. However, reducing the amount of precious metal is not a suitable solution because there is also a strong demand for improved cell performance. For automotive applications, improved power density is critical whereas for stationary applications, higher voltage efficiencies are necessary. The major technical challenge continues to be improved cathode electrocatalyst performance with air as the oxidant.
A type of battery which utilizes a similar principle is the zinc-air battery, which relies upon the redox couples of oxygen and zinc. Zinc-air batteries are advantageous since they consume oxygen from the air as a fuel, contain no toxic or explosive constituents and operate at one atmosphere of pressure. Zinc-air batteries typically operate by adsorbing oxygen from the air where it is reduced using an oxygen reduction catalyst. As the oxygen is reduced, zinc metal is oxidized. The two half-reactions of a zinc-air battery during discharge are:
Cathode: O
2
+2H
2
O+4
e

→4OH

Anode: 2Zn→2Zn
2+
+4
e

Overall: 2Zn+O
2
+2H
2
O→2Zn(OH)
2
Zinc-air batteries can be primary batteries or secondary batteries. Although zinc-air batteries consume oxygen as a fuel, they are typically not considered fuel cells because they have a standing potential without a fuel source. Zinc-air cells absorb oxygen from the air on the air electrode during discharge and release air out of the cell during recharge.
Typically, air electrodes (cathodes) are alternatively stacked with zinc electrodes (anodes) which are packaged in a container that is open to the air using small holes or ports. When the battery cell discharges, oxygen is reduced to O
2−
while zinc metal is oxidized to Zn
2+
. When all of the zinc has been oxidized, the secondary battery can be recharged where Zn
2+
is reduced back to zinc metal.
The advantages of zinc air batteries over other rechargeable battery systems are safety, long run time and light weight. The batteries contain no toxic materials and can run as long as 10 to 14 hours, compared to 2 to 4 hours for most lithium-ion batteries. Zinc-air batteries are also very light weight, leading to good power density (power per unit of weight or volume), which is ideal for portable applications. The two major problems associated with zinc-air batteries, however, are limited total power and poor rechargeability/cycle lifetime.
In particular, power is becoming a major area of attention for battery manufacturers trying to meet the increased demands of modem electronics. Current zinc-air batteries can deliver sufficient power to permit the batteries to be used in specific low-power laptops and other portable devices that have relatively low power requirements. Most laptops and other portable electronic devices, however, require batteries that are able to provide a level of power that is higher than the capabilities of current zinc-air batteries.
The main reason for the low power of zinc-air batteries is believed to be related to the inefficiency of the catalytic reactions in the air electrodes. In zinc-air batteries, metal-carbon composite powders are used at the cathode to reduce the oxygen from the air to O
2−
. It is believed that poor accessibility of the catalyst and the local microstructural environment around the catalyst and adjoining carbon is important in the efficiency of oxygen reduction. See, for example, P. N. Ross et al.,
Journal of the Electrochemical Society,
Vol. 131, pg. 1742 (1984).
Rechargeability is also a problem with zinc-air batteries. Current zinc-air technology can deliver safe, non-toxic and light weight

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metal-carbon composite powders, methods for producing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metal-carbon composite powders, methods for producing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal-carbon composite powders, methods for producing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3327006

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.