Metal binding compounds and their use in cell culture medium...

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Culture medium – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S405000

Reexamination Certificate

active

06767741

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is in the fields of cell biology and biochemistry. The invention relates generally to cell and tissue culture medium compositions comprising metal binding compounds and/or transition element complexes comprising the metal binding compounds, and the use of such compounds and complexes. More specifically, the invention relates to compositions for cell and tissue culture comprising one or more transition element cations in a complex with a metal binding compound.
2. Related Art
Cell culture media provide the nutrients necessary to maintain and grow cells in a controlled, artificial and in vitro environment. Characteristics and formulations of cell culture media vary depending upon the particular cellular requirements. Important parameters include osmolarity, pH, and nutrient compositions.
Medium formulations have been used to cultivate a number of cell types including animal, plant and bacterial cells. Cultivated cells have many uses including the study of physiological processes and the production of useful biological substances. Examples of such useful products include monoclonal antibodies, hormones, growth factors, enzymes and the like. Such products have many commercial and therapeutic applications and, with the advent of recombinant DNA technology, cells can be engineered to produce large quantities of these products. Cultured cells are also routinely used for the isolation, identification and growth of viruses which may be used as vectors and/or vaccines. Thus, the ability to cultivate cells in vitro is not only important for the study of cell physiology, but is also necessary for the production of useful substances which may not otherwise be obtained by cost-effective means.
Cell culture medium formulations have been well documented in the literature and a number of media are commercially available. In early cell culture work, medium formulations were based upon the chemical composition and physicochemical properties (e.g., osmolality, pH, etc.) of blood and were referred to as “physiological solutions” (Ringer, S., J.
Physiol.,
3:380-393 (1880); Waymouth, C., In:
Cells and Tissues in Culture,
Vol. 1, Academic Press, London, pp. 99-142 (1965);Waymouth, C.,
In Vitro
6:109-127 (1970)). However, cells in different tissues of the mammalian body are exposed to different microenvironments with respect to oxygen/carbon dioxide partial pressure and concentrations of nutrients, vitamins, and trace elements; accordingly, successful in vitro culture of different cell types may require the use of different medium formulations. Typical components of cell culture media include amino acids, organic and inorganic salts, vitamins, trace metals, sugars, lipids and nucleic acids, the types and amounts of which may vary depending upon the particular requirements of a given cell or tissue type.
Typically, cell culture medium formulations are supplemented with a range of additives, including undefined components such as fetal bovine serum (FBS) (10-20% v/v) or extracts from animal embryos, organs or glands (0.5-10% v/v). While FBS is the most commonly applied supplement in animal cell culture media, other serum sources are also routinely used, including newborn calf, horse and human. These types of chemically undefined supplements serve several useful functions in cell culture media (Lambert, K. J. et al., In:
Animal Cell Biotechnology,
Vol. 1, Spier, R. E. et al., Eds., Academic Press New York, pp. 85-122 (1985)). For example, these supplements provide carriers or chelators for labile or water-insoluble nutrients; bind and neutralize toxic moieties; provide hormones and growth factors, protease inhibitors and essential, often unidentified or undefined low molecular weight nutrients; protect cells from physical stress and damage; and provide carriers (e.g., transferrin and ceruloplasmin) for certain essential metal ions (e.g., Fe
++
and Fe
+++
). Thus, serum and/or animal extracts are commonly used as relatively low-cost supplements to provide an optimal culture medium for the cultivation of animal cells.
Unfortunately, the use of serum or animal extracts in tissue culture applications has several drawbacks (Lambert, K. J. et al., In:
Animal Cell Biotechnology,
Vol 1, Spier, R. E. et al., Eds., Academic Prcs New York, pp. 85-122 (1985)). For example, the chemical composition of these supplements may vary between lots, even from a single manufacturer. In addition, supplements of animal or human origin may also be contaminated with adventitious agents (e.g., mycoplasma, viruses, and prions). These agents can seriously undermine the health of the cultured cells when these contaminated supplements are used in cell culture media formulations. Further, these agents may pose a health risk when substances produced in cultures contaminated with adventitious agents are used in cell therapy and other clinical applications. A major fear is the presence of prions which cause spongiform encephalopathies in animals and Creutzfeld-Jakob disease in humans.
The presence of serum in culture media can present additional difficulties. Cell surface chemistry, which is a critical portion of the in vitro microenvironment for many cell types, can be adversely modified via adsorption or incorporation of serum or extract proteins. The use of undefined components such as serum or animal extracts also prevents the true definition and elucidation of the nutritional and hormonal requirements of the cultured cells, thus eliminating the ability to study, in a controlled way, the effect of specific growth factors or nutrients on cell growth and differentiation in culture. Moreover, undefined supplements prevent the researcher from studying aberrant growth and differentiation and specific disease-related changes in cultured cells. Using cell culture media in the industrial production of biological substances, serum and animal extract supplementation of culture media can also complicate and increase the costs of the purification of the desired substances from the culture media due to the necessity of removing serum or extract proteins.
Serum-Free Media
To overcome the drawbacks of the use of serum or animal extracts, a number of serum-free media have been developed. These media, which often are specifically formulated to support the culture of a single cell type, incorporate defined quantities of purified growth factors, lipoproteins and other proteins usually provided by the serum or extract supplement. Since the components (and concentrations thereof) in such culture media are precisely known, these media arc generally referred to as “defined culture media” and often as “serum-free media” or “SFM.” A number of SFM formulations are commercially available from, for example, Life Technologies, Inc. (Rockville, Md.) such as those designed to support the culture of endothelial cells, keratinocytes, monocytes/macrophages, fibroblasts, neurons, lymphocytes, chondrocytes, hematopoietic stem cells, embryonic stem cells, insect cells, CHO cells, Vero cells, 293 HEK cells, HeLa cells, PER-C6 (Human embryonal retinal epithelial cells), or hepatocytes.
SFM generally provide several distinct advantages to the user. For example, the use of SFM facilitates the investigation of the effects of a specific growth factor or other medium component on cellular physiology, which may be masked when the cells are cultivated in serum- or extract-containing media. In addition, SFM may contain much lower quantities of protein (indeed, SFM are often termed “low protein media”) than those containing serum or extracts, greatly simplifying and lowering the cost of purifying biological substances produced by cells cultured in SFM.
Some extremely simple SFM, which consist essentially of vitamins, amino acids, organic and inorganic salts and buffers have been used for cell culture. Such media (often called “basal media”), however, are usually seriously deficient in the nutrition, hormone, or biological response modifier content required by most animal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metal binding compounds and their use in cell culture medium... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metal binding compounds and their use in cell culture medium..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal binding compounds and their use in cell culture medium... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3190819

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.