Metal-air fuel cell battery systems having mechanism for...

Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S068000, C429S127000

Reexamination Certificate

active

06649294

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to improved methods and systems for optimally discharging metal-air fuel cell battery (FCB) systems and devices, as well as improved methods and systems for optimally recharging the same in a quick and efficient manner.
2. Description of the Prior Art
In U.S. Pat. No. 6,296,960 , Applicant discloses several types of novel metal-air fuel cell battery (FCB) systems. During power generation, metal-fuel tape is transported over a stationary cathode structure in the presence of an ionically-conducting medium, such as an electrolyte-impregnated gel. In accordance with well known principles of electro-chemistry, the transported metal-fuel tape is oxidized as electrical power is produced from the system.
Metal-air FCB systems of the type disclosed in U.S. Pat. No. 6,296,960 have numerous advantages over prior art electro-chemical discharging devices. For example, one advantage is the generation of electrical power over a range of output voltage levels required by particular electrical load conditions. Another advantage is that oxidized metal-fuel tape can be repeatedly reconditioned (i.e. recharged) during battery recharging cycles carried out during electrical discharging operation, as well as separately therefrom.
In U.S. Pat. No. 5,250,370, Applicant discloses an improved system and method for recharging oxidized metal-fuel tape used in prior art metal-air FCB systems. By integrating a recharging head within a metal-air FCB discharging system, this technological improvement theoretically enables quicker recharging of metal-fuel tape for reuse in FCB discharging operations. In practice, however, a number of important problems have remained unsolved which has hitherto rendered rechargeable FCB systems commercially unfeasible.
In particular, prior art FCB systems have required very large volumes of physical space to accommodate enlarged discharging electrodes, as well as enlarged recharging electrodes. In practice, however, this is often not possible, or practical. Consequently, it has not been possible to optimally discharge and recharge metal-fuel tape using prior art FCB systems and methodologies.
Thus there is a great need in the art for an improved method and apparatus for electrochemically discharging and recharging metal-fuel tape in a manner which overcomes the limitations of prior art technologies.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, a primary object of the present invention is to provide an improved method of and apparatus for electrochemically discharging and/or recharging metal-air fuel cell batteries (FCB) in a manner which avoids the shortcomings and drawbacks of prior art technologies.
Another object of the present invention is to provide such an apparatus in the form of a Metal-Fuel Tape Discharging Subsystem, wherein the path-length of oxidized metal-fuel tape is substantially extended in a folded manner during discharging operations in order that a supply of oxidized metal-fuel tape contained within a cassette device or on a supply reel can be rapidly discharged in order to satisfy dynamic loading conditions.
Another object of the present invention is to provide such a system, wherein the recharging head assembly comprises a plurality of cathode and anode structures which are selectively arranged about the extended path-length of oxidized metal-fuel tape during discharging operations.
Another object of the present invention is to provide such a system, wherein the oxidized metal-fuel tape to be discharged comprises multiple metal-fuel tracks for use in generating different output voltages from a metal-air FCB system.
Another object of the present invention is to provide such an system, wherein a discharging power regulating subsystem is provided for regulating operating parameters during electrochemical oxidation of metal-oxide during discharging operations.
Another object of the present invention is to provide such an apparatus in the form of a Metal-Fuel Tape Recharging Subsystem, wherein the path-length of oxidized metal-fuel tape is substantially extended during recharging operations in order that a supply of oxidized metal-fuel tape contained within a cassette device or on a supply reel can be rapidly recharged.
Another object of the present invention is to provide such a system, wherein the recharging head assembly comprises a plurality of cathode and anode structures which are selectively arranged about the extended path-length of oxidized metal-fuel tape during recharging operations.
Another object of the present invention is to provide such a system, wherein the oxidized metal-fuel tape to be recharged comprises multiple metal-fuel tracks for use in generating different output voltages from a metal-air FCB system.
Another object of the present invention is to provide such a system, wherein a recharging power regulating subsystem is provided for regulating operating parameters during electro-chemical reduction of metal-oxide during recharging operations.
Another object of the present invention is to provide such apparatus in the form of a hybrid-type Metal-Fuel Tape Discharging/Recharging Subsystem, wherein the path-length of oxidized metal-fuel tape is substantially extended during discharging and recharging operations in order that a supply of oxidized metal-fuel tape contained within a cassette device or on a supply reel can be rapidly discharged and recharged accordingly.
Another object of the present invention is to provide such a hybrid-type system, wherein the discharging/recharging head assembly comprises a plurality of cathode and anode structures which are selectively arranged about the extended path-length of oxidized metal fuel tape during discharging and recharging operations.
Another object of the present invention is to provide such a hybrid-type system, wherein the oxidized metal-fuel tape to be discharged comprises multiple metal-fuel tracks for use in generating different output voltages from a metal-air FCB system.
Another object of the present invention is to provide such a hybrid-type system, wherein a discharging power regulating subsystem is provided for regulating operating parameters during electro-chemical oxidation of metal-oxide during discharging operations.
These and other objects of the present invention will become apparent hereinafter.


REFERENCES:
patent: 3536535 (1970-10-01), Lippincott
patent: 5250370 (1993-10-01), Faris
patent: 5536592 (1996-07-01), Celeste et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Metal-air fuel cell battery systems having mechanism for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Metal-air fuel cell battery systems having mechanism for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal-air fuel cell battery systems having mechanism for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3116450

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.