Message passing in a hierarchical temporal memory based system

Data processing: artificial intelligence – Knowledge processing system – Knowledge representation and reasoning technique

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C706S020000, C706S015000

Reexamination Certificate

active

07904412

ABSTRACT:
A hierarchy of computing modules is configured to learn a cause of input data sensed over space and time, and is further configured to determine a cause of novel sensed input data dependent on the learned cause. Further, the hierarchy has a first level of computing modules and a second level of at least one computing module, where at least one of the computing modules in the first level operates on a first server, and where the at least one computing module in the second level operates on a second server. The hierarchy also includes a message manager module configured to relay information between the first server and the second server.

REFERENCES:
patent: 4766534 (1988-08-01), DeBenedictis
patent: 4845744 (1989-07-01), DeBenedictis
patent: 5255348 (1993-10-01), Nenov
patent: 5712953 (1998-01-01), Langs
patent: 6122014 (2000-09-01), Panusopone et al.
patent: 6195622 (2001-02-01), Altschuler et al.
patent: 6400996 (2002-06-01), Hoffberg et al.
patent: 6468069 (2002-10-01), Lemelson et al.
patent: 6567814 (2003-05-01), Banker et al.
patent: 6625585 (2003-09-01), MacCuish et al.
patent: 6714941 (2004-03-01), Lerman et al.
patent: 6751343 (2004-06-01), Ferrell et al.
patent: 7251637 (2007-07-01), Caid et al.
patent: 7739208 (2010-06-01), George et al.
patent: 2002/0150044 (2002-10-01), Wu et al.
patent: 2003/0069002 (2003-04-01), Hunter et al.
patent: 2003/0123732 (2003-07-01), Miyazaki et al.
patent: 2003/0167111 (2003-09-01), Kipersztok et al.
patent: 2004/0002838 (2004-01-01), Oliver et al.
patent: 2004/0148520 (2004-07-01), Talpade et al.
patent: 2004/0267395 (2004-12-01), Discenzo et al.
patent: 2005/0063565 (2005-03-01), Nagaoka et al.
patent: 2005/0190990 (2005-09-01), Burt et al.
patent: 2005/0222811 (2005-10-01), Jakobson et al.
patent: 2006/0184462 (2006-08-01), Hawkins
patent: 2006/0212444 (2006-09-01), Handman et al.
patent: 2006/0235320 (2006-10-01), Tan et al.
patent: 2006/0248026 (2006-11-01), Aoyama et al.
patent: 2006/0248073 (2006-11-01), Jones et al.
patent: 2006/0253491 (2006-11-01), Gokturk et al.
patent: 2006/0259163 (2006-11-01), Hsiung et al.
patent: 2007/0005531 (2007-01-01), George et al.
patent: 2007/0192264 (2007-08-01), Hawkins et al.
patent: 2007/0192267 (2007-08-01), Hawkins et al.
patent: 2007/0192268 (2007-08-01), Hawkins et al.
patent: 2007/0192269 (2007-08-01), Saphir et al.
patent: 2007/0192270 (2007-08-01), Hawkins et al.
patent: 2007/0228703 (2007-10-01), Breed
patent: 2007/0276774 (2007-11-01), Ahmad et al.
patent: 2008/0059389 (2008-03-01), Jaros et al.
patent: 2009/0006289 (2009-01-01), Jaros et al.
patent: 2010/0207754 (2010-08-01), Shostak et al.
patent: 1557990 (2005-07-01), None
patent: WO 2006/063291 (2006-06-01), None
patent: WO 2008/067326 (2008-06-01), None
patent: WO 2009/006231 (2009-01-01), None
Dimitrova et al., N., “Motion Recovery for Video Content Classification”, 1995.
Dolin et al., R., “Scalable Collection Summarization and Selection”, 1999.
Wu et al., G., “Multi-camera Spatio-temporal Fusion and Biased Sequence-data Learning for Security Surveillance”, 2003.
Park et al., S., “Recognition of Two-person Interactions Using a Hierarchical Bayesian Network”, 2003.
U.S. Office Action, U.S. Appl. No. 11/622,456, Mar. 20, 2009, 9 pages.
U.S. Office Action, U.S. Appl. No. 11/622,456, Nov. 6, 2008, 7 pages.
U.S. Office Action, U.S. Appl. No. 11/622,456, May 7, 2008, 14 pages.
U.S. Office Action, U.S. Appl. No. 11/622,454, Mar. 30, 2009, 11 pages.
U.S. Office Action, U.S. Appl. No. 11/622,454, Jun. 3, 2008, 13 pages.
U.S. Office Action, U.S. Appl. No. 11/622,457, Apr. 21, 2009, 6 pages.
U.S. Office Action, U.S. Appl. No. 11/622,457, Nov. 20, 2008, 8 pages.
U.S. Office Action, U.S. Appl. No. 11/622,457, May 6, 2008, 14 pages.
U.S. Office Action, U.S. Appl. No. 11/622,457, Aug. 24, 2007, 10 pages.
U.S. Office Action, U.S. Application No. 11/147,069, Jul. 29, 2009, 43 pages.
U.S. Office Action, U.S. Appl. No. 11/147,069, Jan. 9, 2009, 38 pages.
U.S. Office Action, U.S. Appl. No. 11/147,069, May 15, 2008, 37 pages.
U.S. Office Action, U.S. Appl. No. 11/147,069, Oct. 30, 2007, 34 pages.
U.S. Office Action, U.S. Appl. No. 11/147,069, May 29, 2007, 36 pages.
U.S. Office Action, U.S. Appl. No. 11/147,069, Jan. 9, 2007, 27 pages.
Adelson, E.H. et al., “The Perception of Shading and Reflectance,” Perception as Bayesian Inference, Knill, D.C. et al., ed., 1996, pp. 409-423, Cambridge University Press, UK.
Agrawal, R. et al., “Mining Sequential Patterns,” IEEE, 1995, pp. 3-14.
Demeris, Y. et al., “From Motor Babbling to Hierarchical Learning by Imitation: A Robot Developmental Pathway,” Proceedings of the Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, 2005, pp. 31-37.
Felleman, D.J. et al., “Distributed Hierarchical Processing in the Primate Cerebral Cortex,” Cerebral Cortex, Jan./Feb. 1991, pp. 1-47, vol. 1.
Fine, S. et al., “The Hierarchical Hidden Markov Model: Analysis and Applications,” Machine Learning, Jul. 1998, pp. 41-62, vol. 32.
Foldiak, P., “Learning Invariance from Transformation Sequences,” Neural Computation, 1991, pp. 194-200, vol. 3, No. 2.
Fukushima, K., “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position,” Biol. Cybernetics, 1980, pp. 193-202, vol. 36.
George, D. et al., “A Hierarchical Bayesian Model of Invariant Pattern Recognition in the Visual Cortex,” Mar. 2005.
George, D. et al., “Invariant Pattern Recognition Using Bayesian Inference on Hierarchical Sequences,” Oct. 2004.
Guo, C-E. et al., “Modeling Visual Patterns by Integrating Descriptive and Generative Methods,” International Journal of Computer Vision, May 29, 2003, 28 pages, vol. 53, No. 1.
Han, K. et al., “Automated Robot Behavior Recognition Applied to Robotic Soccer,” in Proceedings of the IJCAI-99 Workshop on Team Behaviors and Plan Recognition, 1999, 6 pages.
Hawkins, J. et al., “On Intelligence,” Sep. 2004, Times Books, Henry Holt and Company, New York, NY 10011.
Hernandez-Gardiol, N. et al., “Hierarchical Memory-Based Reinforcement Learning,” Proceedings of Neural Information Processing Systems, 2001, 7 pages.
Hinton, G.E. et al., “The “Wake-Sleep” Algorithm for Unsupervised Neural Networks,” Science, May 26, 1995, pp. 1158-116, vol. 268.
Hoey, J., “Hierarchical Unsupervised Learning of Facial Expression Categories,” 2001, IEEE, 0-7695-1293-3, pp. 99-106.
Hyvarinen, A. et al., “Bubbles: A Unifying Framework for Low-Level Statistical Properties of Natural Image Sequences,” J. Opt. Soc. Am. A., 2003, pp. 1237-1252, vol. 20, No. 7.
International Search Report & Written Opinion, PCT/US2005/044729, May 14, 2007, 14 pages.
Isard, M. et al., “Icondensation: Unifying Low-Level and High-Level Tracking in a Stochastic Framework,” Lecture Notes in Computer Science 1406, Burkhardt, H. et al., ed., 1998, pp. 893-908, Springer-Verlag, Berlin.
Lee, T.S. et al., “Hierarchical Bayesian Inference in the Visual Cortex,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis., Jul. 2003, pp. 1434-1448, vol. 20, No. 7.
Lewicki, M.S. et al., “Bayesian Unsupervised Learning of Higher Order Structure,” Moser, M.C. et al., ed., Proceedings of the 1996 Conference in Advances in Neural Information Processing Systems 9, 1997, pp. 529-535.
Murphy, K. et al., “Using the Forest to See the Trees: A Graphical Model Relating Features, Objects and Scenes,” Advances in Neural Processing System, 2004, vol. 16.
Murray, S.O. et al., “Shaper Perception Reduces Activity in Human Primary Visual Cortex,” Proceedings of the Nat. Acad. Of Sciences of the USA, Nov. 2002, pp. 15164-151169, vol. 99, No. 23.
Olshausen, B.A. et al., “A Neurobiological Model of Visual Attention and Invariant Pattern Recognition Based on Dyna

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Message passing in a hierarchical temporal memory based system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Message passing in a hierarchical temporal memory based system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Message passing in a hierarchical temporal memory based system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2773864

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.