Mercury removal catalyst and method of making and using same

Chemistry of inorganic compounds – Modifying or removing component of normally gaseous mixture

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S215500, C210S660000, C210S679000, C095S134000, C095S901000

Reexamination Certificate

active

06258334

ABSTRACT:

This invention relates to removal of mercury from waste streams with an activated carbon catalyst made by intimately mixing sulfur with a synthetic carbon precursor, followed by curing, carbonizing and activating. By having the sulfur mixed with a carbon precursor, prior to the curing, carbonizing, and activating process, as opposed to with already-made activated carbon, there is more efficient removal of mercury than prior sulfur-containing activated carbon catalysts.
BACKGROUND OF THE INVENTION
Emissions of heavy metals such as Hg, Ni, Cr, Cd, Co, Pb, V, Se, Be, As, Zn, etc. have become environmental issues of increasing importance because of the dangers to human health. Mercury is a trace element of particular concern, because during coal and municipal solid waste combustion, most of the mercury present in coal and municipal solid waste is transferred into the vapor phase due to its high volatility. Currently available pollution abatement technologies are not capable of effectively controlling gas phase mercury emissions at high temperatures particularly from flue gas emissions in the utility industry. Once discharged to the atmosphere, mercury persists in the environment and creates long-term contamination problems. Furthermore, well documented food chain transport and bioaccumulation of mercury require strict control of mercury emissions from coal-fired power plant and other sources.
Present mercury emission control technologies such as adsorption using various absorbents, direct carbon injection, flue gas desulfurization technologies (FGD), wet scrubbers, wet filtration, etc. are still limited to research stages. None of these technologies have been shown to completely remove mercury, in particular elemental mercury, from gas streams, particularly above ambient temperature.
Among these technologies, adsorption on sulfur-impregnated carbon has shown some promise with removal of 50-90% mercury in flue gases depending on reaction conditions. Sulfur is introduced into activated carbon by impregnating with different forms of sulfur such as elemental sulfur, carbon disulfide, hydrogen sulfide, or sulfur dioxide. Because sulfur is deposited on the surface of the activated carbon, there are some disadvantages with either final products or the process such as 1) uniformity of the sulfur over the surface is questionable due to the heterogeneity of the carbon surface; 2) the amount of sulfur in the carbon is limited; 3) pore opening is significantly decreased after formation of the carbon-sulfur complex on the surface (pore entrance) and consequently the surface area is reduced; 4) chemical interaction between sulfur and carbon may be weak 5) introduction of other additives is restricted by competition with sulfur for surface active sites in carbon; and 6) physical shape of final carbon is limited to granules or powder.
A need exists, therefore, for a more homogeneous and efficient mercury removal catalyst. The present invention provides such a catalyst.
SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, there is provided an activated carbon catalyst having sulfur dispersed homogeneously thereon, the sulfur being chemically bonded to the activated carbon.
In accordance with another aspect of the invention, there is provided a method of making the catalyst that involves forming an intimate mixture of a synthetic carbon precursor and a sulfur-containing material, curing the carbon precursor, carbonizing the carbon precursor, activating the carbonized carbon precursor to produce an activated carbon catalyst having sulfur chemically bonded to said activated carbon and uniformly dispersed thereon.
In accordance with another aspect of the invention the catalyst is used for removing mercury from mercury-containing fluid streams.


REFERENCES:
patent: 4491609 (1985-01-01), Degel et al.
patent: 4500327 (1985-02-01), Nishino et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mercury removal catalyst and method of making and using same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mercury removal catalyst and method of making and using same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mercury removal catalyst and method of making and using same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2477532

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.