Memory system including guides that receive memory modules

Electrical connectors – With coupling movement-actuating means or retaining means in... – Coupling part for receiving edge of planar board moving...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S327000

Reexamination Certificate

active

06629855

ABSTRACT:

TECHNICAL FIELD
The present invention relates to the field of computer systems. More particularly, the present invention relates to a computer system that includes a memory module and a memory module guide.
BACKGROUND ART
Computer systems typically include a motherboard on which a memory module receiving structure is mounted. The memory module receiving structure allows for memory modules to be coupled to the circuit board. This allows for flexible memory configuration by using memory modules having a desired configuration of memory components.
Many recent prior art memory systems use Dual Inline Memory Modules (DIMMs) aligned in parallel. Typically, each DIMM includes memory components that are Dynamic Random Access Memory (DRAM) semiconductor devices or Synchronous Dynamic Random Access Memory (SDRAM) devices. Each DIMM includes a memory card on which memory components are disposed. A card edge connector is formed by contact pads located on both sides of the bottom edge of the memory card.
Prior art memory module receiving structures typically include a connector receptacle, often referred to as a “socket” that is electrically coupled to the other electronic components on the motherboard. Individual DIMMs are installed by inserting the DIMM partially into the socket. A lever disposed on one side of the DIMM near the bottom side of the DIMM is pivoted by contact with the socket. When the DIMM is fully inserted, the lever latches in place. This provides positive feedback to the operator indicating that the DIMM is properly and fully inserted into the socket. The lever engages the socket so as to hold the DIMM securely in place. Extraction of the DIMM is accomplished by grasping the lever and pulling the lever downward. This pivots the lever so as to apply an upward force to the DIMM, moving the DIMM upward. The DIMM may then be removed.
Such prior art systems provide good electrical contact and allow for easy insertion and extraction of DIMMs. However, attempts to install or remove a DIMM can result in damage to the socket and/or to the connections to the socket printed on the motherboard. Such contact can tear the socket off the motherboard. This type of damage is common in systems that include densely packed motherboards and systems that do not allow easy access to all of the sockets.
Some prior art systems include card guides located on each side of the row of sockets. Each card guide includes slots that receive a side surface of a DIMM. When a card guide is located on each side of the receptacle, each DIMM is supported on both sides. This limits movement of individual DIMMs, decreasing the likelihood of damage to DIMMS, sockets and the motherboard resulting from contact during attempts to install or remove a DIMM or during attempts to install or remove a DIMM in an adjoining socket.
Prior art DIMM designs that include an ejection lever located on one side of the DIMM itself are expensive to manufacture. More particularly, the placement of the ejection lever on the DIMM complicates the manufacturing process of the DIMM and often results in manufacturing defects related to the assembly of the ejection lever to the memory card of the DIMM. Also, typically, the ejection lever is located near the bottom of the DIMM. This makes access to the ejection lever difficult.
Recently, the demand for more and more processing capacity and smaller sized computer housings has resulted in increases in component density on each motherboard. Also, many housing designs do not allow for easy access. Thus, access to the ejection lever has become more difficult.
Increased demand for memory capacity has lead to longer and taller DIMMs that can hold higher numbers of memory components. These longer and taller DIMMs make access to the ejection lever even more difficult. More particularly, the height of the DIMM makes it more difficult for a user to reach the ejection lever. The increased length of recent DIMMs adds to the component density problems on the motherboard, resulting in DIMMs being located close to other components. The increased component density further limits access to the ejection lever.
When longer and taller DIMMS are used, damage can result even in systems that include card guides. The increased height of the taller DIMM creates a greater moment when force is applied near the top of the DIMM. Thus, when a DIMM is contacted near the top of the DIMM, the force can result in both the card guide and the socket being torn off the circuit board. Also, when a longer DIMM is used, insertion of the DIMM requires the application of more force than is required for inserting a conventional DIMM module. The application of such force can result in damage to the DIMM and to the socket and to the motherboard itself.
What is needed is a system and apparatus that will allow for the use of longer and taller DIMMs. In addition, a system and apparatus is needed that meets the above need and that is less likely to be damaged. Also, a system and apparatus is needed that meets the above needs and that is inexpensive and easy to operate. Moreover, a system and apparatus is needed that includes DIMMs that are less expensive and that have lower defect rates during DIMM manufacturing processes. The present invention provides an elegant solution to the above needs.
DISCLOSURE OF THE INVENTION
The present invention provides a system and apparatus that allows for the use of longer and taller memory modules. The system and apparatus of the present invention is less likely to result in damage than prior art systems and is inexpensive and easy to operate. The present system includes memory modules that do not include levers mounted on the memory module itself. Thus, the memory module of the present invention is inexpensive to manufacture and defect rate during manufacturing is reduced.
A memory system is disclosed that includes memory modules that are longer and taller than conventional prior art DIMMs. Each memory module includes two openings that extend from the top surface of the memory module near each side surface of the memory module. These openings form tabs that extend horizontally along the top surface of the memory module. Notches are disposed in each side surface of the memory module. These notches are semicircular in shape and are located near the top surface of the memory module. The memory module also includes memory components and a card-edge connector. The card-edge connector is electrically coupled to the memory components and extends along the bottom of the memory module.
A guide assembly for a computer system is disclosed that includes sockets for receiving memory modules and guides located near each end of the sockets. Each guide includes slots that are adapted to receive memory modules. The guide assembly also includes latches that couple to each guide. The latches are coupled to the guides such that the latches rotate. Each latch includes a projection that extends from the latch such that, upon the insertion of memory modules into the slots, rotation of the latches results in application of force to the memory modules for facilitating insertion of the memory modules. More particularly, the projection that extends from the latch engages the notch on the side surface of the memory module for applying a downward force to the memory module. Rotation of each latch into a latched position engages a tab on the memory module with a slot extending along the bottom surface of each latch such that a surface of the latch engages the tab so as to securely latch the memory module in place.
Extraction of memory modules is facilitated by rotation of latches on opposite sides of a memory module. This applies an upward force to the memory module being removed, moving the memory module at least partially out of the socket. The memory module can then be easily removed by grasping the top of the memory module and pulling the memory module out from between the guides.
The present invention provides for easy insertion and extraction of memory modules and allows for the use of memory modules that are longer and talle

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Memory system including guides that receive memory modules does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Memory system including guides that receive memory modules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Memory system including guides that receive memory modules will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3167764

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.