Memory cell incorporating a chalcogenide element and method...

Active solid-state devices (e.g. – transistors – solid-state diode – Bulk effect device – Bulk effect switching in amorphous material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S002000, C257S004000, C257S005000

Reexamination Certificate

active

06236059

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates generally to semiconductor circuit devices and methods for making such devices. More particularly, this invention relates to semiconductor memory cells that incorporate a chalcogenide element and to methods for making chalcogenide memory cells.
2. Description of the Related Art
A diode array is a well known memory system used in semiconductor memory devices. The individual diodes in a given array are typically addressed via digit and word lines. In previous diode array memory systems, the individual memory cells were limited to just two memory or logic states: high or low. However, the number of possible logic states for a given memory cell may be increased by connecting a programmable resistor in series with the selected diode. By selectively altering the resistance of the progammable resistor, the diode may be changed to different logic states that correspond to the changed resistance levels. The number of permissible logic states in such systems is limited generally only by the number of different resistance levels that may be reliably set in the programmable resistor.
One possibility for such a programmable resistor is a chalcogenide element. By applying an external stimulus to the chalcogenide element, the internal structure of the chalcogenide material may be modified. The structural modification results in a new resistance level for the chalcogenide material. The chalcogenide material is ovonic in that the observable structural/resistance change exhibited is a variation of the Ovshinsky Effect, and is a function of the current which is applied to the chalcogenide element through the diode.
In the formation of a typical chalcogenide element, a layer of nitride, such as silicon nitride, is disposed over a lower electrode of carbon or TiSi
x
. A small pore is formed in the nitride layer, exposing a small area of the lower electrode. A layer of chalcogenide material is deposited on the nitride layer, filling the pore. A layer of carbon is deposited over the chalcogenide layer to form an upper electrode. A TiN layer is disposed over the upper electrode. The chalcogenide layer, upper carbon layer, and TiN layer form a stack that is masked and etched to remove the stack constituents, except in the vicinity of the pore. A passivation layer is placed over the stack and etched to form a contact hole leading to the TiN layer. Finally, a metallization step is performed.
Present techniques for forming the chalcogenide element in a diode array usually involve four separate masking steps: small pore formation, chalcogenide element stack formation, contact layer, and metallization.
There are several disadvantages associated with the present technique for incorporating a chalcogenide element. To begin with, there is an inherent tendency for the chalcogenide stack to dislodge from the nitride layer, causing electrical failure. This lifting problem is due to the rather poor adherence to silicon nitride exhibited by many chalcogenide materials. Second, there are certain difficulties associated with the stack etch step. Due to their physical and chemical nature, the etching of many chalcogenide materials is presently a process that is difficult to control. Finally, the sheer number of masking steps required make the process relatively uneconomical.
The present invention is directed to overcoming, or at least reducing the effects of, one or more of the foregoing disadvantages.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, a method of forming a forming a chalcogenide element in a memory cell is provided. The method includes the steps of forming a conducting element in a semiconductor substrate and forming a first insulating layer on the semiconductor substrate overlying the conducting element. A pore is formed in the first insulating layer that extends to the conducting element. A layer of chalcogenide material is formed in the pore, and a first conducting layer is formed in contact with the chalcogenide material.
In accordance with another aspect of the present invention, a method of forming a chalcogenide element in a memory cell is provided. The method includes the steps of providing a conducting element in a semiconductor substrate and forming a first insulating layer on the semiconductor substrate overlying the conducting element. A pore is formed in the first insulating layer that extends to the conducting element. A layer of chalcogenide material is formed on the first insulating layer such that a portion of the layer of chalcogenide is disposed in the pore and contacts the conducting element. The portion of the layer of chalcogenide material that is disposed on the first insulating layer is selectively removed by chemical mechanical planarization (CMP). A first conducting layer is formed in contact with the chalcogenide material, and a second conducting layer is formed on the first conducting layer.
In accordance with yet another aspect of the present invention, a method of forming a chalcogenide element in a memory cell is provided. The method includes the steps of providing a semiconductor substrate and providing a conducting element in the semiconductor substrate. A recess is formed in the conducting element. A first insulating layer is formed in the recess. A pore is formed in the first insulating layer that extends to the conducting element. A layer of chalcogenide material is formed in the pore, and a first conducting layer is formed in contact with the chalcogenide material.
In accordance with still another aspect of the present invention, a memory cell is provided. The memory cell includes a semiconductor substrate that has a conducting element disposed therein, and a chalcogenide element. The chalcogenide element is provided by forming a first insulating layer on the semiconductor substrate. A pore is formed in the first insulating layer that extends to the conducting element. A layer of chalcogenide material is formed in the pore, and a first conducting layer is formed in contact with the chalcogenide material.


REFERENCES:
patent: 5705430 (1998-01-01), Avanzino et al.
patent: 5789277 (1998-08-01), Zahorik et al.
patent: 5831276 (1998-11-01), Gonzalez et al.
patent: 5841150 (1998-11-01), Gonzalez et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Memory cell incorporating a chalcogenide element and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Memory cell incorporating a chalcogenide element and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Memory cell incorporating a chalcogenide element and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2461096

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.