Active solid-state devices (e.g. – transistors – solid-state diode – Bulk effect device – Bulk effect switching in amorphous material
Patent
1999-08-13
2000-11-28
Smith, Matthew
Active solid-state devices (e.g., transistors, solid-state diode
Bulk effect device
Bulk effect switching in amorphous material
257 2, 257 3, 257 4, 257 5, H01L 4700
Patent
active
061538906
ABSTRACT:
A memory cell incorporating a chalcogenide element and a method of making same is disclosed. In the method, a doped silicon substrate is provided with two or more polysilicon plugs to form an array of diode memory cells. A layer of silicon nitride is disposed over the plugs. Using a poly-spacer process, small pores are formed in the silicon nitride to expose a portion of the polysilicon plugs. A chalcogenide material is disposed in the pores by depositing a layer of chalcogenide material on the silicon nitride layer and planarizing the chalcogenide layer to the silicon nitride layer using CMP. A layer of TiN is next deposited over the plugs, followed by a metallization layer. The TiN and metallization layers are then masked and etched to define memory cell areas.
REFERENCES:
patent: 3241009 (1966-03-01), Dewald et al.
patent: 3423646 (1969-01-01), Cubert et al.
patent: 3699543 (1972-10-01), Neale
patent: 3796926 (1974-03-01), Cole et al.
patent: 3886577 (1975-05-01), Buckley
patent: 4099260 (1978-07-01), Lynes et al.
patent: 4115872 (1978-09-01), Bluhm
patent: 4174521 (1979-11-01), Neale
patent: 4194283 (1980-03-01), Hoffmann
patent: 4203123 (1980-05-01), Shanks
patent: 4227297 (1980-10-01), Angerstein
patent: 4272562 (1981-06-01), Wood
patent: 4420766 (1983-12-01), Kasten
patent: 4458260 (1984-07-01), McIntyre et al.
patent: 4499557 (1985-02-01), Holmberg et al.
patent: 4502208 (1985-03-01), McPherson
patent: 4569698 (1986-02-01), Feist
patent: 4630355 (1986-12-01), Johnson
patent: 4642140 (1987-02-01), Noufi et al.
patent: 4666252 (1987-05-01), Yaniv et al.
patent: 4677742 (1987-07-01), Johnson
patent: 4757359 (1988-07-01), Chiao et al.
patent: 4795657 (1989-01-01), Formigoni et al.
patent: 4804490 (1989-02-01), Pryor et al.
patent: 4809044 (1989-02-01), Pryor et al.
patent: 4823181 (1989-04-01), Mohsen et al.
patent: 4876220 (1989-10-01), Mohsen et al.
patent: 4876668 (1989-10-01), Thakoor et al.
patent: 4881114 (1989-11-01), Mohsen et al.
patent: 4892840 (1990-01-01), Esquivel et al.
patent: 5144404 (1992-09-01), Iranmanesh et al.
patent: 5166096 (1992-11-01), Cote et al.
patent: 5166758 (1992-11-01), Ovshinsky et al.
patent: 5177567 (1993-01-01), Klersy et al.
patent: 5233217 (1993-08-01), Dixit et al.
patent: 5293335 (1994-03-01), Pernisz et al.
patent: 5296716 (1994-03-01), Ovshinsky et al.
patent: 5335219 (1994-08-01), Ovshinsky et al.
patent: 5341328 (1994-08-01), Ovshinsky et al.
patent: 5363329 (1994-11-01), Troyan
patent: 5414271 (1995-05-01), Ovshinsky et al.
patent: 5510629 (1996-04-01), Karpovich et al.
patent: 5534711 (1996-07-01), Ovshinsky et al.
patent: 5534712 (1996-07-01), Ovshinsky et al.
patent: 5536947 (1996-07-01), Klersy et al.
patent: 5687112 (1997-11-01), Ovshinsky
patent: 5714768 (1998-02-01), Ovshinsky et al.
patent: 5714795 (1998-02-01), Ohmi et al.
patent: 5751012 (1998-05-01), Wolstenholme et al.
patent: 5789758 (1998-08-01), Reinberg
patent: 5814527 (1998-09-01), Wolstenholme et al.
Kim and Kim, "Effects of High-Current Pulses on Polycrystalline Silicon Diode with n-type Region Heavily Doped with Both Boron and Phosphorus," J. Appl. Phys., 53(7):5359-5360, 1982.
Neale and Aseltine, "The Application of Amorphous Materials to Computer Memories," IEEE, 20(2):195-205, 1973.
Pein and Plummer, "Performance of the 3-D Sidewall Flash EPROM Cell," IEEE, 11-14, 1993.
Post and Ashburn, "Investigation of Boron Diffusion in Polysilicon and its Application to the Design of p-n-p Polysilicon Emitter Bipolar Transistors with Shallow Emitter Junctions," IEEE, 38(11):2442-2451, 1991.
Post et al., "Polysilicon Emitters for Bipolar Transistors: A Review and Re-Evaluation of Theory and Experiment," IEEE, 39(7):1717-1731, 1992.
Post and Ashburn, "The Use of an Interface Anneal to Control the Base Current and Emitter Resistance of p-n-p Polysilicon Emitter Bipolar Transistors," IEEE, 13(8):408-410, 1992.
Rose et al., "Amorphous Silicon Analogue Memory Devices," J. Non-Crystalline Solids, 115:168-170, 1989.
Schaber et al., "Laser Annealing Study of the Grain Size Effect in Polycrystalline Silicon Schottky Diodes," J. Appl. Phys., 53(12):8827-8834, 1982.
Yamamoto et al., "The I-V Characteristics of Polycrystalline Silicon Diodes and the Energy Distribution of Traps in Grain Boundaries," Electronics and Communications in Japan, Part 2, 75(7):51-58, 1992.
Yeh et al., "Investigation of Thermal Coefficient for Polycrystalline Silicon Thermal Sensor Diode," Jpn. J. Appl. Phys., 31(Part 1, No. 2A):151-155, 1992.
Oakley et al., "Pillars--The Way to Two Micron Pitch Multilevel Metallisation," IEEE, 23-29, 1984.
Gonzalez Fernando
Wolstenholme Graham R.
Zahorik Russell C.
Keshavan Belur
Micro)n Technology, Inc.
Smith Matthew
LandOfFree
Memory cell incorporating a chalcogenide element does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Memory cell incorporating a chalcogenide element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Memory cell incorporating a chalcogenide element will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1728116