Membrane type fluid pump

Pumps – Motor driven – Electric or magnetic motor

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4174131, 347 68, F04B 1700

Patent

active

056811527

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to membrane type fluid pumps where a membrane serves as a wall of a chamber and is made to oscillate by means of electromagnetic and piezoelectric driving means. The membrane causes a fluid disposed inside the chamber and inside the membrane to flow out through one or more holes defined in the membrane.
The known constructions have the drawback of unavoidable leaking that takes place when the driving means are shut off and fluid leaks through the opening or openings defined in the prior art constructions.
One object of the present invention is to provide a new type of membrane pump that does not leak when the pump is not operating.


SUMMARY OF THE INVENTION

One preferred embodiment of the present invention is a membrane type fluid pump having a chamber defined therein that is in fluid communication with a fluid container. The fluid pump also has a driving member, a membrane that closes one open side of the chamber and at least one hole defined in the membrane. The driving member has the ability to cause the membrane to oscillate or swing. One novel feature of the present invention is that a plunge like body is disposed within the chamber and biased by a spring. The body is displaceable relative to the chamber and the membrane and has an end surface that adheres to the side of the membrane when the membrane is in a rest position. More specifically, the body adheres to the side of the membrane that faces towards the interior of the chamber.


BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic cross sectional view of a preferred embodiment of the membrane type pump of the present invention.
FIG. 2 is a schematic cross sectional view showing a portion of the present invention in a smaller scale when the pump is in a closed rest position.
FIG. 3 is a schematic cross sectional view when the pump is in an operational position.
FIG. 4 is a schematic cross sectional view when the pump is in an operational position.
FIG. 5 is a side view of a portion of a second embodiment of the present invention.
FIG. 6 is a side view of a portion of a third embodiment of the present invention.
FIG. 7 is a side view of a portion of a fourth embodiment of the present invention.


DETAILED SPECIFICATION

With reference to FIG. 1, a casing or housing 1 is shown. The casing 1 has a bottom 2 and an enclosing wall 3 that is attached to a periphery of the bottom 2. A recessed bore 4 is defined by a cylindrical wall portion 5 and a bottom 6 at the center of the bottom 2. The wall 3 has a free edge defining a step-like recess 7 for receiving a diaphragm 8 and a preferably annular driving core operating member 9. The casing 1 also includes a nipple 10 or the like for defining a fluid channel for carrying fluid from a container or other fluid source.
Adjacent to a central portion of the diaphragm 8 is preferably one or more perforations 11 defined.
A plunger 12 is inserted into the central cylindrical recess 4 inside the casing 1. The plunger 12 may, for example, be a cylindrical body having an end surface 13 that is facing outwardly toward the diaphragm 8. The plunger 12 may also have an inwardly facing end surface having a compression spring 14 disposed between the bottom 6 and the inwardly facing end surface.
FIGS. 1 and 2 illustrate the position of the diaphragm 8 and the plunger 12 in a rest position. The spring 14 holds the end surface 13 of the plunger 12 in engagement with the inner side of a central portion 15 of the diaphragm 8 having one or more perforations 11 defined therein. The arrows in FIG. 2 indicate how the fluid is prevented from entering into the space between the plunger 12 and the diaphragm 8 and from leaking out therefrom. In this position, the plunger 12 can be regarded as being like a valve body that engages a valve seat.
FIGS. 3 and 4 illustrate how the diaphragm 8 is made to vibrate or oscillate by means of the driving member 9 and the diaphragm 8 may flex in one or the other direction. FIG. 3 illustrates how the diaphragm 8 has

REFERENCES:
patent: 4383264 (1983-05-01), Lewis
patent: 4520375 (1985-05-01), Kroll
patent: 4737802 (1988-04-01), Mielke
patent: 4939405 (1990-07-01), Okuyama et al.
Japanese patent abstract "Blast Head For Ink Jet" dated 18 Mar. 1978. Application No. 51-103316.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Membrane type fluid pump does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Membrane type fluid pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Membrane type fluid pump will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1021444

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.