Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From phenol – phenol ether – or inorganic phenolate
Reexamination Certificate
2000-12-21
2002-11-05
Hampton-Hightower, P. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From phenol, phenol ether, or inorganic phenolate
C528S125000, C528S128000, C528S172000, C528S173000, C528S176000, C528S183000, C528S188000, C528S220000, C528S229000, C528S350000, C528S353000
Reexamination Certificate
active
06476177
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to selected copolyimide compositions each of which can be processed as a melt and which exhibit recoverable crystallinity upon cooling from the melt. In preferred embodiments, these copolyimide compositions can also be produced in a melt via melt polymerization.
BACKGROUND OF THE INVENTION
Polyimides constitute a class of valuable polymers being characterized by thermal stability, inert character, usual insolubility in even strong solvents, and high glass transition temperature (T
g
) among others. Prior art discloses that their precursors have heretofore been polyamic acids, which may take the final imidized form either by thermal or chemical treatment.
Polyimides have always found a large number of applications requiring the aforementioned characteristics in numerous industries, and currently their applications continue to increase dramatically in electronic devices, especially as dielectrics.
Different aspects regarding polyimides and copolyimides may be found in a number of publications, such as for example:
Sroog, C. E.,
J. Polymer Sci
.: Part C, No. 16 1191 (1967).
Sroog, C. E.,
J. Polymer Sci.: Macromolecular Reviews
, Vol. 11, 161 (1976).
Polyimides, edited by D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Blackie, USA: Chapman and Hall, New York, 1990.
Several terms are defined below which are used in accordance with the present invention of high performance polyimides that possess simultaneously the following desirable properties: high thermal stability, such they can be processed in the melt, and which exhibit recoverable semicrystallinity upon crystallization from the melt.
The term “melt-processible polyimide” means that the polyimide has sufficiently high thermoxidative stability and sufficiently low melt viscosity at temperatures at or above the melting point of the polyimide such that the polyimide can be processed in the melt to form a shaped object (e.g., extruded into a pellet, etc.) without the polyimide undergoing any significant degradation.
The term “melt-polymerizable polyimide” means that the polyimide can be formed in a melt in the absence of solvent by reaction of its respective monomers (e.g., dianhydride(s) and diamine(s)) to form initially polyamic acid(s), which are subsequently converted to the polyimide. Furthermore, the polyimide produced has sufficiently high thermoxidative stability and sufficiently low melt viscosity at temperatures at or above the melting point of the polyimide such that the polyimide can be processed in the melt to form a shaped object (e.g., extruded into a pellet, etc.) without the polyimide undergoing any significant degradation.
The term “DSC” is an acronym for differential scanning calorimetry, a thermal analysis technique widely used for accurately determining various thermal characteristics of samples, including melting point, crystallization point, and glass transition temperature. The acronym “DSC” is employed in text that follows below. The following definitions of slow, intermediate, and fast crystallization kinetics and related terms are based upon behavior of a given sample during DSC analysis under slow cooling, quench cooling, reheat, etc. scans during the DSC analysis (see infra for details).
The term “slow crystallization kinetics” means that the crystallization kinetics are such that, for a given copolyimide sample, the sample, when subjected to DSC analysis, essentially does not show any crystallization during slow cooling (i.e., cooling at 10° C./minute) from its melt but does exhibit a crystallization peak on subsequent reheat. Furthermore, no crystallization occurs upon quench cooling.
The term “intermediate crystallization kinetics” means that the crystallization kinetics are such that, for a given copolyimide sample, when subjected to DSC analysis, the sample exhibits some crystallization on slow cooling and furthermore does exhibit some crystallization on reheat after slow cooling. Furthermore, there is no strong evidence for crystallization occurring upon quench cooling.
The term “fast crystallization kinetics” means that the crystallization kinetics are such that, for a given copolyimide sample, when subjected to DSC analysis the sample does exhibit crystallization peaks in both slow and quench cooling and furthermore no observable crystallization peak is seen on subsequent reheat of a given sample following slow cooling. After quench cooling, there may be some crystallization exhibited on reheat.
The term “melt of a polymer” means the polymer exists as the melt in a liquid or substantially liquid state. If the polymer is crystalline or semicrystalline, a melt of the polymer is necessarily at a temperature greater than or equal to its melting point (T
m
).
The term “recoverable semicrystallinity” and/or “recoverable crystallinity” refers to behavior occurring in a semicrystalline or crystalline polymer and specifically means that behavior that occurs when the polymer, upon heating to a temperature above its melting point and subsequent slow cooling to a temperature well below its melting point, exhibits a melting point in a reheat DSC scan. (If a melting point is not observed during the reheat DSC scan, the polymer does not exhibit recoverable crystallinity. The longer a sample is below T
m
but above T
g
, the greater probability it has to crystallize.)
The term “semicrystalline polymer” means a polymer that exhibits at least some crystalline characteristics and is partially but not completely crystalline. Most or all known polymers having crystalline characteristics are semicrystalline, but not totally crystalline, since they also have at least some amorphous characteristics. (Hence the term crystalline polymer is technically a misnomer in most or all instances where it is used, but nevertheless is often used.)
The melt index of a polymer is defined to be the number of grams of polymer extruded at a specific temperature and load through a die of a specified length and diameter in a time period often minutes. Details of the geometry and test procedures are described in ASTM D1238 (ASTM=American Society for Testing and Materials).
Some significant advantages of melt processing of semicrystalline polyimides having recoverable crystallinity according to the invention include processing without a solvent such that tedious and costly solvent recycling is unnecessary and can be eliminated. High thermal stability is not only essential for processing in the melt at temperatures of greater than or equal to 350° C. but also is required for polyimides used in high temperature applications. Semicrystalline polyimides are often highly desirable in comparison to otherwise comparable polyimides that are amorphous, since the former in relation to the latter often exhibit superior properties, such as having better mechanical properties (e.g., especially higher modulus), capability for use at higher temperatures without property degradation (e.g., better solder resistance, modulus retention), higher solvent resistance, higher creep viscosities (e.g., lower tendencies for distortion of a film or other structure with time), and lower coefficients of thermal expansion.
In order for a semicrystalline polyimide to be considered melt-processible, the polyimide must possess a melting point below a temperature of about 385° C., which temperature is a practical limit for melt processing due to both equipment capabilities/limitations and to avoid any significant thermal degradation of the polyimide. Furthermore, the polyimide also must possess a sufficiently low melt viscosity (i.e., less than or equal to a maximum of about 10
8
poise (which is equal to 10
7
Pascal-seconds), but preferably 10
4
poise (which is equal to 10
3
Pascal-seconds), depending on polymer melt temperature and shear rates of the melt processing equipment). Copolymerization can be used to lower the melting temperature of a polymer (e.g., polyimide) but usually results in loss of crystallinity. Prior art polyimide compositions have been unable to achieve suitable reduction in the melt
Auman Brian C.
Corcoran, Jr. William R
Dodd John R
Guidry Mark A
Summers John D.
E. I. du Pont de Nemours and Company
Hampton-Hightower P.
LandOfFree
Melt-processible, thermoplastic random copolyimides having... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Melt-processible, thermoplastic random copolyimides having..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Melt-processible, thermoplastic random copolyimides having... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2992234