Sugar – starch – and carbohydrates – Products – Miscellaneous
Reexamination Certificate
2001-09-06
2004-03-23
Bell, Mark L. (Department: 1755)
Sugar, starch, and carbohydrates
Products
Miscellaneous
C536S102000, C523S001000, C523S220000, C524S047000, C428S373000
Reexamination Certificate
active
06709526
ABSTRACT:
FIELD OF INVENTION
This invention relates a novel starch composition that is substantially homogenous and has desirable rheological characteristics such that it is melt processable by conventional thermoplastic processing equipment. The present composition is particularly suitable for uniaxial and biaxial extensional processes.
BACKGROUND OF THE INVENTION
It is well recognized that starch molecules come in two forms: the substantially linear amylose polymer and the highly branched amylopectin polymer. These two forms of starch have very different properties, probably due to the ease of association of the hydroxyl groups among different molecules. The molecular structure of amylose is essentially linear with two to five relatively long branches. The average degree of polymerization of the branches is about 350 monomer units. Under conditions that provide sufficient freedom of molecular movements, primarily by dilution with suitable solvents, and in some instances, dilution coupled with heating, the linear amylose chains can be oriented into preferentially parallel alignments such that the hydroxyl groups on one chain are in close proximity with those on the adjacent chains. The alignment of neighboring amylose molecules is believed to facilitate intermolecular hydrogen bonding. Consequently the amylose molecules form strong aggregates. In contrast, the molecular structure of amylopectin is highly branched via 1,6-&agr; linkages. The average degree of polymerization of the branches is about 25 monomer units. Due to the highly branched structure, the amylopectin molecules can not move as freely and do not align and associate as readily.
Attempts have been made to process natural starch on standard equipment and existing technology known in the plastic industry. Since natural starch generally has a granular structure, it needs to be destructurized and/or modified before it can be melt processed like a thermoplastic material. For destructurization, the starch is typically heated above its softening and melting temperature under a pressurized condition. Melting and disordering of the molecular structure of the starch granule takes place and a destructurized starch is obtained. Chemical or enzymatic agents may also be used to destructurize, oxidize, or derivatize the starch. Modified starches have been used to make biodegradable plastics, wherein the modified starch is blended as an additive or the minor component with petroleum-based or synthetic polymers. However, when the modified starch is processed by itself or as the major component in a blend with other materials using conventional thermoplastic processing techniques, such as molding or extrusion, the finished parts tend to have a high incidence of defects. Moreover, the modified starch (alone or as the major component of a blend) has been found to have poor melt extensibility; consequently, it cannot be successfully processed by uniaxial or biaxial extensional processes into fibers, films, foams or the like.
Previous attempts to produce starch fibers relate principally to wet-spinning processes. For Example, a starch/solvent colloidal suspension can be extruded from a spinneret into a coagulating bath. This process relies on the marked tendency of amylose to align and form strongly associated aggregates to provide strength and integrity to the final fiber. Any amylopectin present is tolerated as an impurity that adversely affects the fiber spinning process and the strength of the final product. Since it is well known that natural starch is rich in amylopectin, earlier approaches include pre-treating the natural starch to obtain the amylose-rich portion desirable for fiber spinning. Clearly this approach is not economically feasible on a commercial scale since a large portion (i.e, the amylopectin portion) of the starch is discarded. In more recent developments, natural starch, typically high in natural amylopectin content, can be wet-spun into fibers. However, the wet-spun fibers are coarse, typically having fiber diameters greater than 50 microns. Additionally, the large quantity of solvent used in this process requires an additional drying step and a recovery or treatment step of the effluent. Some references for wet-spinning starch fibers include U.S. Pat. No. 4,139,699 issued to Hernandez et al. on Feb. 13, 1979; U.S. Pat. No. 4,853,168 issued to Eden et al. on Aug. 1, 1989; and U.S. Pat. No. 4,234,480 issued to Hernandez et al. on Jan. 6, 1981.
U.S. Pat. Nos. 5,516,815 and 5,316,578 to Buehler et al. relate to starch compositions for making starch fibers from a melt spinning process. The melt starch composition is extruded through a spinnerette to produce filaments having diameters slightly enlarged relative to the diameter of the die orifices on the spinnerette (i.e., a die swell effect). The filaments are subsequently drawn down mechanically or thermomechanically by a drawing unit to reduce the fiber diameter. The major disadvantage of the starch composition of Buehler et al. is that it does not use high molecular weight polymers, which enhance the melt extensibility of starch compositions. Consequently, the starch composition of Buehler et al. could not be successfully melt attenuated to produce fine fibers of 25 microns or less in diameter.
Other thermoplastically processable starch compositions are disclosed in U.S. Pat. No. 4,900,361, issued on Aug. 8, 1989 to Sachetto et al.; U.S. Pat. No. 5,095,054, issued on Mar. 10, 1992 to Lay et al.; U.S. Pat. No. 5,736,586, issued on Apr. 7, 1998 to Bastioli et al.; and PCT publication WO 98/40434 filed by Hanna et al. published Mar. 14, 1997. These starch compositions do not contain the high molecular weight polymers that are necessary to achieve the desired melt viscosity and melt extensibility, which are critical material characteristics to producing fine fibers, thin films or thin-walled foams.
The art shows a need for an inexpensive and melt processable composition from natural starches. Such a melt processable starch composition should not require evaporation of a large quantity of solvents or produce a large amount of effluent during the processing operation. Moreover, such a starch composition should have melt Theological properties suitable for use in conventional plastic processing equipment
The art also shows a need for a starch composition suitable for use in uniaxial or biaxial extensional processes to produce fibers, films, sheets, foams, shaped articles, and the like economically and efficiently. Specifically, the starch composition should have melt rheological properties suitable for uniaxial or biaxial extensional processes in its melt phase in a substantially continuous manner, i.e., without excessive amount of melt fracture or other defects.
SUMMARY OF THE INVENTION
The present invention relates to a starch composition that is melt processable on conventional thermoplastic equipment. Specifically, the starch composition may be successfully processed via uniaxial or biaxial extensional forces to provide a final product with good strength. Moreover the starch composition has rheological properties suitable for use in melt attenuation processes to achieve very high uniaxial or biaxial extensions, which are generally not achievable by other processes, including jet or mechanical elongation processes.
The present invention relates to a starch composition comprising starch, a polymer that is substantially compatible with starch and has a molecular weight sufficiently high to form effective entanglements or associations with neighboring starch molecules, and preferably at least one additive to improve melt flow and melt processability. Polymers having a weight-average molecular weight of at least 500,000 are particularly useful herein. The additive may be a hydroxyl plasticizer, a hydroxyl-free plasticizer, a diluent, or mixtures thereof.
The starch compositions of the present invention have the combination of melt strength and melt viscosities (shear and extensional) in the desired range such that the compositions are uniquely suitable for the melt extensional
Bailey Valerie Ann
Mackey Larry Neil
Trokhan Paul Dennis
Bell Mark L.
Cook C. Brant
Hailey Patricia L.
Vitenberg Vladimir
Weirich David M.
LandOfFree
Melt processable starch compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Melt processable starch compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Melt processable starch compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3203702