Medicated animal foodstuffs

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Specially adapted for ruminant animal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S442000, C426S053000, C426S054000, C426S807000

Reexamination Certificate

active

06387393

ABSTRACT:

This invention relates to methods for incorporating feed ingredients (particularly, but not exclusively, medicaments) with animal foodstuffs, and to substances useful in such methods.
Treatment of intensively farmed animals with medication is often carried out by “mass medication”, that is to say that animals are not treated individually, but as a group. The most efficient way of doing this is by adding the treatment to the animals' feed or drink. Water medication is very labour intensive and may require veterinary supervision, and longer term treatments are much more easily carried out by supplying the group of animals with medicated feed.
Manufactured foodstuffs for animals such as cattle, pigs, and fowl are usually provided in the form of pellets or similar particulate material. Pellets are typically manufactured by combining a cereal base with ingredients such as oil and protein, steam conditioning the mixture (for example at 70° C. for 5 minutes), extruding through a circular die (typically between 2 mm and 15 mm in diameter), cutting into appropriately sized lengths (eg. 5-20 mm), and drying. The finished pellets are generally cylindrically shaped, having a relatively smooth surface, and a density typically of about 1.2 g.cm
−3
.
Conventionally, additives such as drugs are incorporated into the feed mixture before the extrusion step. However, because many different drugs are required to be added to feed pellets from time to time, and because the demand for any particular medicated product is generally relatively low compared to the demand for non-medicated feed, it is not usually viable to provide dedicated plant for manufacturing specific products. Instead, batches of medicated feed are manufactured according to need using machinery otherwise used to produce non-medicated feed. A major problem with this manufacturing regime is that the plant needs to be completely cleaned down after the production of each batch of medicated feed, in order to reduce the risk of contaminating subsequent feed batches. This obviously reduces efficiency and increases operating costs.
The addition of active agents to individual batches of feed could be carried out more cost-effectively “off-line”, that is to say with non-medicated feed pellets being manufactured continuously, and those batches which require medication being transferred to a separate plant for addition of medicament.
This would require the application of the medicament to the surfaces of the finished pellets, and attempts have been made to accomplish this in the past. However, no reliable technology currently exists to enable medications to be routinely and reproducibly added to the external surface of feed pellets and to remain there during transport and use.
It has now surprisingly been found that reliable homogeneity of active ingredient in the finished feed can be achieved by coating the pellets with a cohesive gel containing the active ingredient. It has furthermore been surprisingly found that gel coating according to the invention tends to leave the feed mixing vessel in which the coating is carried cut substantially free from active agent contamination. Because the coating method is not dependent upon the nature of the active ingredient, the invention will also be of use in adding other substances (such as nutritional supplements), and added ingredients in general.
The present invention therefore provides, in one aspect, a method of incorporating an added ingredient with an animal foodstuff, comprising the step of coating feed pellets (or similar particulate foodstuff material) with a cohesive gel containing said added ingredient.
In some instances, the pellets may be fed to animals directly after coating, but more commonly the gel is dried or absorbed into the pellet, thus entrapping the medication in the pellet and giving protection against attrition and the formulation of active agent dust.
In this specification, the term “gel” is to be understood as referring to any viscous cohesive suspension, and the term “gelling agent” to any thickening agent capable of producing such a suspension. The gel is preferably a highly viscous solution or suspension (for example an aqueous suspension), having low flow and good adhesive properties. Thixotropic gels may be used. For the gel to behave as mentioned above, the viscosity should be controlled within the range 5,000 to 20,000 cP (Brookfield RV, spindle 6, 25 rpm, 20° C.) , more preferably in the range 5,000 to 15,000 cP, and ideally in the range 7,500 to 12,500 cP. This viscosity range allows added ingredients having particles of a wide variety of sizes and densities to be homogeneously suspended, and also gives the gel the necessary cohesive properties for good feed pellet distribution and low mixer contamination.
Examples of suitable gelling agents which may be used for this purpose are modified cellulose polymers, synthetic polymers, natural polysaccharides, clays, proteins and colloidal silica, but other gelling agents may also be used. The gel can be supplied to users ready mixed with the added ingredient (s), or as a raw gel, for such ingredient(s) to be added. Alternatively, the gelling agent may be provided in powder form and made up to the finished gel when required, with the added ingredient (as) being either mixed in at the outset , or being added after the gel is made up. If the gelling agent is supplied in powder form, the mixing can be accomplished by adding water, oil, or another appropriate liquid, and mixing vigorously (for example in a high speed planetary mixer) to shear the mixture and allow complete hydration of the gelling agent. The amount of liquid will depend on the gelling agent used, and on the ratio of gelling agent to other ingredients in the powder; typicaly the final gel will contain 1 to 50% w/w (preferably 1 to 10% w/w) of the gelling agent.
Examples of suitable modified cellulose polymers which may be used as the gelling agent are: sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, ethylcellulose, hydroxyethylcellulose, and microcrystalline cellulose.
Examples of suitable synthetic polymers are: polyacrilic acid polymers (Carbomers) polyvinylpyrrolidones (PVPs), crospovidones, polyvinyl alcohols, and couloidal anhydrous silicas.
Examples of natural polysaccharides which may be used include: xanthan gum, acacia gum, agar, carrageenan and tragacanth.
Examples of suitable clays are bentonite and aluminium magnesium silicates, and an example of a suitable protein is gelatin.
The invention may be used to incorporate many different types of added ingredient or combinations of added ingredients. Examples of medicaments which may be used are: antimicrobials (such as tetracyclines, penicillins, sulphonamides, cephalosporins, cephamycins, aminoglycosides, aminocyclitols, trimethoprim, dimetridazole, erythromycin, framycetin, furazolidone, lincosamides, tiamulin, macrolides, and streptbmycin); antiprotozoals (such as clopidol, monensin, salinomycin, narasin, halofucinone, lasalocid, amprolium, maduramicin, and robenidine); and antiparasitics (such as benzimidazoles, imidazothiazoles, avermectines, milbermycins, salicylicanilides and piperazine).
Examples of other added ingredients are growth promoters (such as tylosin, virginiamycin, zinc bacitracin, avoparcin bambermycin, avilamycin) ; vaccines (for example to prevent
E.coli
infections) ; immunostimulants; vitamins (such as vitamin A, B group vitamins, vitamins C, D, E and K3) minerals (for example salts containing micronutrients, such as iron, zinc, copper, selenium, iodine, manganese, calcium and phosphorus) ; and enzymes. The concentration of total added ingredients in the gel will typically range from 0.5 to 10% w/w of the final gel.
Many products may also require a preservative (typically in a concentration of 0.05-5% w/w of the final gel), to prevent the growth of organisms in use. Examples of suitable preservatives are: parabens, benzoic acid and salts, propionic acid and salts, sorbic acid and salts, brono

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medicated animal foodstuffs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medicated animal foodstuffs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medicated animal foodstuffs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2863282

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.