Surgery – Respiratory method or device – Means for supplying respiratory gas under positive pressure
Reexamination Certificate
1998-09-18
2003-04-08
Lewis, Aaron J. (Department: 3761)
Surgery
Respiratory method or device
Means for supplying respiratory gas under positive pressure
C128S204210, C128S205230
Reexamination Certificate
active
06543449
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention.
This invention relates generally to a medical ventilator and more particularly to a medical ventilator which is operable in both an invasive and non-invasive ventilatory environment.
2. Description of the Related Art.
Ventilators are used by patients in various health situations. Typically, these patients have weak physiological attributes that prevent them from breathing unassisted and require invasive ventilation. Invasive ventilatory support generally requires the patient having either a tracheotomy or endotracheal tube disposed into the trachea of the patient. Such treatment generally occurs in hospitals and is administered in acute care situations or post operative recovery situations. Ventilators, such as the Siemens 300, are known to provide invasive ventilatory assistance.
The use of invasive ventilatory support has many risks. By positioning an endotracheal tube down the trachea of a patient, the patient is placed at some medical risk. Typically, there are certain physiological attributes in the trachea of a person for preventing bacteria and the like from invading into a person's lung. However, the endotracheal tube circumvents these natural defense systems. Accordingly, patients may acquire pneumonia by having the bacteria circumvent the natural defense mechanism of the body. Additionally, positioning of an endotracheal tube into a patient subjects the patient to a risk of tracheal abrasion. Overall, the positioning of an endotracheal tube, known as intubation, should be avoided when necessary.
Typically, when a patient is placed on ventilatory support, most patients are subsequently weaned from the ventilator. Weaning involves manipulating the ventilator from that mode when the ventilator provides the most ventilatory assistance to the mode when the patient is providing most of the breathing. However, during the weaning of the patient from the ventilator, the patient remains intubated continuing further exposing the patient to health risks. Thus, there is a need for a medical ventilator that will enable a patient to be extubated, having the endotracheal tube removed from the trachea, as soon as possible to eliminate health risks.
Additionally, there are situations which arise wherein a patient having difficulty breathing is intubated prematurely and connected to a ventilator. This generally occurs since the attending physician lacks a ventilatory device which can provide ventilation in a non-invasive environment for initially determining if the patient is merely having difficulty breathing or truly requires invasive ventilation. This situation arises due to the costs associated with having a separate invasive ventilator and a non-invasive respirator which may be utilized to provide the patient with initial ventilation support. Due to the costs and expenses of having duplicate machines, most hospitals merely have invasive ventilators at their disposal.
Also, to provide ventilatory assistance in hospitals, the hospitals generally have specially designed respiratory care facilities having compressed air and oxygen hookups permanently affixed in a specific location. Such fully equipped facilities are expensive and also limit the areas where the ventilator may be accessed. Consequently, some patients who are otherwise healthy but require invasive ventilation are prevented from discharge due to their dependency on the respiratory care facility. With the high cost of hospital stays, some patients who require long term ventilatory utilization may occur exceptional hospitalization charges for the use of such expensive facilities. Thus, it is desirous to enable the ventilatory patient to be discharged to a low-acuity subacute facility or nursing home if the situation is warranted. However, most of these facilities lack the necessary pressurized air and oxygen hookups thus preventing the ventilatory patient from being discharged.
Also, since surgical areas and emergency room areas are typically stressful environments, it is desired that ventilators are easy to operate. This is also essential in today's health care environment since many different type of health care providers are assisting patients. These include respiratory therapists, nurses and physicians. Accordingly, it is desired that an intuitive ventilator exists for both invasive and non-invasive ventilation.
SUMMARY
Accordingly, it is an object of the present invention to provide a ventilator that can be used in both an invasive and non-invasive environment.
Furthermore, it is an object of the present invention to provide a ventilator which can operate in both an invasive and non-invasive environment and having an operator interface that is simple to use for reducing error in operation;
Also, it is an object of the present invention to provide a self contained invasive
on-invasive ventilator having its own source of air and having the ability to mix with an oxygen or other gas source to provide flexibility in providing ventilatory assistance at different physical locations without requiring special respiratory care facilities with preexisting air sources.
The above objectives are accomplished according to the present invention by providing a ventilatory system for use in an invasive and non-invasive ventilator environment. The ventilator system includes a gas flow generator for providing a flow of gas to a patient. A conduit delivers the gas flow to the airway of the patient. At least a first valve regulates the delivery of the gas from the gas flow generator to the conduit. A controller controls the delivery of the gas flow to the patient. The system further includes a first set of operational parameters for directing the controller to control the delivery of gas to a patient if the patient is being ventilated in an invasive ventilation mode and a second set of operational parameters for directing the controller to control the delivery of gas to the patient if the patient is being ventilated in a non-invasive ventilation mode. Also a selector is utilized for selecting either the first or second set of parameters to direct the ventilator to provide either invasive or non-invasive ventilatory support to the patient.
Also, a unique blower is utilized for providing ventilatory assistance. The blower is a multi-stage centrifugal blower having an air inlet for receiving air from the ambient environment. A first impeller imparts centrifugal force onto the air. A first stator receives the air from the impeller and pressurizes the air. A second impeller subsequently receives the air from the first stator and imparts additional centrifugal force onto the air. A first impeller spacer directs the air from the first stator to the second impeller. A second stator receives the air from the second impeller and further pressurizes the air. A third impeller receives the air from the second stator and further imparts centrifugal force into the air. A second impeller spacer directs the air from the second stator to the third impeller. A blower outlet permits the pressurized air to leave the blower assembly. The overall impeller and stator configuration enables air to be pressurized to at least one hundred and sixty centimeters H
2
O when exiting the blower outlet.
Also, a graphical user interface is utilized in the ventilator for controlling the operation of the ventilator. An activation area is present for displaying a first activation device for a first mode of ventilation and a second activation device for a second mode of ventilation. A selector selects either the first or second activation device. A display area then displays the operational parameters pertaining either to the first or second mode of ventilation depending on the mode selected by the operator. Only those operational parameters relating to the particular ventilation mode selected by the operator are displayed.
These and other objects, features, and characteristics of the present invention, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the foll
Harrington Steve
Kimm Gardner J.
Mabry Rebecca A.
Novkov Donald J.
Rogers David R.
Boss Gerald R.
Lewis Aaron J.
Respironics Inc.
Schneider Ryan A.
Troutman Sanders LLP
LandOfFree
Medical ventilator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Medical ventilator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical ventilator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3025185