Surgery – Sexual appliance
Reexamination Certificate
2001-07-27
2004-06-29
Gilbert, Samuel G. (Department: 3736)
Surgery
Sexual appliance
Reexamination Certificate
active
06755781
ABSTRACT:
TECHNICAL FIELD
This invention generally relates to medical slings, methods of making such slings, kits including such slings, and methods of treating a damaged portion of a patient's body using such slings.
BACKGROUND INFORMATION
Urinary incontinence is a disorder that generally affects people of all ages. The inability to control urination can impact a patient both physiologically and psychologically. Urinary incontinence can interfere with a patient's daily activity and impair quality of life. Stress urinary incontinence is one type of urinary incontinence. Actions including straining, coughing, and heavy lifting can cause those with stress urinary incontinence to void urine involuntarily.
Various physiological conditions cause urinary incontinence in women. Stress urinary incontinence generally is caused by two conditions that occur independently or in combination, intrinsic sphincter deficiency and hypermobility. Intrinsic sphincter deficiency (ISD) is a condition where the urethral sphincter fails to coapt properly. When functioning properly, the urethral sphincter muscles relax to enable the patient to void, and the sphincter muscles are otherwise constricted to retain urine. ISD may cause urine to leak out of the urethra during stressful actions. Hypermobility is a condition where the pelvic floor is weakened or damaged causing the bladder neck and proximal urethra to rotate and descend in response to increases in intraabdominal pressure. When intraabdominal pressure increases (due, for example, to strain resulting from coughing), the hypermobility condition may cause urine leakage. Some women suffer from a combination of ISD and hypermobility.
The methods for treating stress urinary incontinence include placing a sling to either compress the urethral sphincter or placing a sling to support, elevate or provide a “back stop” to the bladder neck and proximal urethra. Providing support to the bladder neck and proximal urethra maintains the urethra in the normal anatomical position and elevation places the urethra above the normal anatomical position. The “back stop” prevents descent according to the hammock theory such that the back stop prevents the bladder neck from descending upon application of strain.
Generally, slings are employed to support anatomical structures. Slings may be made from one or more materials derived from mammalian tissue(s), synthetic material(s), or from a combination of mammalian tissue(s) and synthetic material(s).
After implantation in a patient, slings made from mammalian tissues typically require a six to twelve month period to be absorbed by the patient's body, after which the implanted mammalian tissue is not recognizable from the patient's surrounding tissue. Mammalian tissue slings include tissue harvested from the patient or a donor. In some instances, the mammalian tissue may be human cadaveric tissue.
The success of mammalian tissue sling surgery is limited when the tissue sling shifts after surgery from the implantation site causing the sling to become incorporated by patient tissue in an improper position. Improper sling placement can also result when the sling comprised of mammalian tissue shrinks after placement inside the patient. Excess tension, shifting, and shrinkage may occur independently or in combination to cause failed sling retention.
SUMMARY OF THE INVENTION
The present invention relates to slings disposed with cuts, methods of making such slings, medical kits including such slings, and methods of treating a damaged portion of a patient's body using such slings. Various known surgical procedures employ slings to support anatomical structures. Exemplary surgical applications include the treatment of urinary incontinence, the repair of herniation, and orthopedics generally.
In accordance with the invention, cuts are disposed through the sling material to provide open areas in the sling which enable rapid tissue ingrowth into the sling material while maintaining a high tensile strength. The cuts can be slits, holes, and apertures. The sling with the cuts according to the invention maintains a substantially constant width during and after implantation in a patient's body. The risk of pressure necrosis or erosion of the damaged portion of the patient's body caused by uneven sling pressure is reduced because the sling width remains substantially constant even when the sling is stretched longitudinally during the implantation procedure.
The benefits of such a sling, which can comprise synthetic material, mammalian tissue, or a combination of synthetic and mammalian tissue material with cuts disposed through the material, include rapid fibrosing of the sling, a shortened healing period, and little or no sling movement after implantation. In accordance with the invention, when a sling is employed to treat female urinary incontinence connective tissue resembling scar tissue will begin to infiltrate one or more open areas disposed in the sling (which is positioned underneath the patient's urethra). The formation of scar tissue generally adds bulk that compresses the urethra and provides the support to improve patient continence. The scar tissue that infiltrates the sling holds the sling at the site of implantation and inhibits or prevents its movement.
In general, in one aspect, the invention involves a sling for use in a medical application. The sling is made of a sheet of synthetic material, mammalian tissue, or a combination of mammalian tissue and synthetic material. The sheet has a longitudinal axis with a first end portion and a second end portion. The second end portion of the sheet is disposed opposite and away from the first end portion along a longitudinal axis. The sheet also includes a first side and a second side, the second side is disposed opposite and away from the first side by a distance and along a perpendicular axis. The perpendicular axis is perpendicular or substantially perpendicular to the first axis (i.e., for example a longitudinal axis). The perpendicular axis intersects the longitudinal axis at the midpoint or substantially the midpoint of the longitudinal axis. The sheet further includes one or more cuts disposed substantially along at least a portion of the second axis (i.e., for example a perpendicular axis). The cuts are disposed such that upon exposure to tensioning force applied to the sheet substantially along the longitudinal axis during the medical application, the distance along the perpendicular axis remains substantially constant.
Embodiments of this aspect of the invention can include the following features. The cuts disposed on the sling may be a slit disposed through the sheet of material. The slits may be disposed such that at least some of the slits open upon exposure to the tensioning force applied during the medical application. The open slits provide open areas on the sling which permit tissue crosslinking and ingrowth therein when implanted inside the body of a patient.
Alternatively, the cuts may comprise any aperture disposed through the sheet of the sling. Upon exposure to the tensioning force applied during the medical application, at least some, and generally all, of the apertures on the sling remain open. The apertures that remain open provide open areas on the sling. The open areas permit tissue crosslinking and ingrowth into the cuts when the sling is implanted inside the body of a patient.
According to the invention, the cuts may be disposed substantially along the perpendicular axis of the sling. In some embodiments the cuts may be equidistant from one another.
In other embodiments, a line may be disposed, as a visual indicator, substantially along at least a portion of the perpendicular axis of the sling. The line can be made by applying a surgical ink to the sling material.
The material of the sling may be derived from mammalian tissue source(s), synthetic material(s), or a combination of mammalian tissue(s) and synthetic material(s). The mammalian tissue source may be human, human cadaveric, or tissue-engineered human tissue. The
Gilbert Samuel G.
Sci-Med Life Systems, Inc.
Testa Hurwitz & Thibeault LLP
LandOfFree
Medical slings does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Medical slings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical slings will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3301235