Medical marking devices and methods for their use

Surgery – Instruments – Means for marking animals

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S185000

Reexamination Certificate

active

06197034

ABSTRACT:

TO WHOM IT MAY CONCERN
Be it known that We, Nedeljko Vladimira Gvozdic, a resident of the County of Alachua, City of Gainesville, State of Florida, and Farrel LeVasseur, a resident of the County of Bay, City of Bay City, State of Michigan, both Citizens of the United States, have invented new and useful devices which are
MEDICAL MARKING DEVICES AND METHODS FOR THEIR USE
The following of which is a specification therefor.
The invention disclosed and discussed herein deals with a medical marking device which is useful for making lines and marks on soft and hard tissue of a mammal. The invention also deals with a pen containing a medical marking device and methods of using such pens to make lines and marks on soft and hard tissue of a mammal. The pen, which can be used for surgical or any other medical marking applications, is configured to be held freely in a person's hand like an ordinary writing instrument.
BACKGROUND OF THE INVENTION
The invention deals with a medical marking device which is useful for making lines and marks on soft and hard tissue in preparation for surgery or other medical applications in which medical personnel are required to draw lines of different widths or colors or, to make reference points on the surface or under the surface of the skin or other appropriate hard and soft tissues of a body.
It is known to those skilled in the art that a number of medical procedures require the placement of various types of lines and dot-type markings on the surface of tissue or, the placement of reference points just under the surface of the tissue.
Furthermore, it is known to those skilled in the art that surgeons need to draw lines on the surfaces of hard and soft tissue of the body before surgery, to mark the position of the incision line. A surgeon needs to make these markings on tissue such that the lines can be easily drawn with desirable and consistent line widths. Also, the markings sometimes need to vary in color. These lines and marks need to be drawn with precision, and in the case of the dots, the surgeon may use the dots to do a surgical outline, but then must be able to connect the dots, and thus, the surgeon must be able to see the dots and draw the connecting line with precision. Such demands are even greater when small children are subjected to corrective surgery. The younger the child, the more precise the surgical treatment has to be in order for a scar from such surgery to be less visible after the healing process.
Serious obstacles have been created, particularly for reconstructive surgeons by the unavailability of a device which a surgeon can use to precisely and preferably “on demand” place reference points just under the surface of the skin or other body tissues. When placed just under the surface of tissues, these reference marks remain visible only temporarily in such tissues. In addition, the device must be capable of being sterilized before use.
The reference points are placed by the surgeon prior to surgical procedures. Once the surgical procedure has started, body fluids may smear the original lines when the fluids are being wiped off the body, and the original lines may become completely erased. As indicated supra, precise redrawing of original lines is possible only if a surgeon can place these multiple reference points into the tissue along the path of the line and redraw lines between these reference points. Placement of the reference points is a tedious and hard task. The precision and ease by which surgeons can place these reference points to a large extent determines how precisely the surgeon can carry out complicated reconstructive and corrective surgery. The more precise a surgeon can carry out the surgical procedure, the more likely after the healing process the patient will have minimized visibility of the surgical scar and the more likely the body tissue will be reconstructed in a proper manner.
Some of today's surgeons do not make reference points at all since there is no really good commercially available device to make such points.
Currently available, and mostly used surgical marking devices for drawing lines on the surface of a tissue are felt-tipped or fiber-tipped. These devices are identical in construction to ordinary writing felt tip or fiber tip pens. In surgical applications, such pens are sterilized and filled with appropriate FDA approved ink or coloring agents. These commercially available pens draw lines reasonably well on dry skin, however, when the skin is wet, such as by fluids, such as, for example, saline, blood, and the like, they absorb these fluids and cease leaving lines and/or marks. Consequently, surgeons have to use more than one of these pens during a single surgery, especially if they have to re-draw the lines. Currently, commercially available pens are not only cost ineffective choices, with no alternatives, but more importantly, the unreliable and unpredictable performance of these pens frustrates most of the surgeons, especially those doing intricate surgical procedures.
Some surgeons refuse to use existing commercially available pens and they use their own home made devices which are not only inconvenient to use, but may endanger the patient, because such devices cannot always be adequately sterilized. Another disadvantage of using currently commercially available surgical grade felt and fiber tip based pens is the difficulty in controlling line width. The width of lines is often unpredictable depending on the angle under which the pen is used for drawing, on the softness of felt used in the felt tip pens, and the pressure that the surgeon exerts on the pen while drawing on the surface of the tissue. The line width becomes, to a large extent, an arbitrary and difficult to control process, since the width can change during the drawing of a single line. Line width cannot be precisely predetermined. This is particularly the case when a surgeon writes on the surface of a wet body tissue. Marks are typically wider than the intended incision, for example in the repair of a cleft lip, complicating the surgical procedure and restricting precision of the corrective surgery.
The “home made” procedure identified above can be found essentially in U.S. Pat. No. 4,508,106, which issued Apr. 2, 1985 to Angres, in which the eye lid is anesthetized and stabilized, and a series of needles coated with pigment solution is inserted into the edge of the eye lid to implant the pigment solution into the dermal and/or epidermal layer of skin beneath the eye lid edge.
There is disclosed in U.S. Pat. No. 4,665,912, which issued May 19, 1987 to Burton, a device which operates in a similar manner to a ball point pen configuration, but with the modification that the tubular barrel has a narrow opening at one end, and there is a needle carried in the barrel which can extend out of the barrel. The needle and opening form an annular flow passage for a dye carried in a reservoir. The device can move the needle in and out of the opening by an internal device which extends and retracts the needle and in the process, provides the dye onto, or into the skin. It should be noted that the internal device is spring loaded to manually move a tapered needle. It requires the dye to have a viscosity substantially higher than water. Pens used for tattooing require that the dye have a viscosity substantially greater than that of water. In the instant invention, the preferred viscosity of the dye/ink is actually the viscosity of water, even though the viscosity of the dye/ink can be higher or lower than that of water. Thus, this device is substantially different from the devices of the present invention.
U.S. Pat. No. 4,671,277, which issued on Jun. 9, 1987 to Beuchat deals with a device for controlling the dispensing of pigments in solution by the use of a reciprocating needle. This device is driven by a motor and is the typical “tattoo” pen.
Yet another tattoo device can be found in U.S. Pat. No. 4,719,825, which issued on Jan. 19, 1988 in which the tattooing device includes a disposable syringe in which a tattoo dye is dispense

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical marking devices and methods for their use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical marking devices and methods for their use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical marking devices and methods for their use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2478941

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.