Medical instruments and devices and parts thereof using...

Dentistry – Orthodontics

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C433S008000, C433S020000, C623S001150, C623S001160, C623S001200

Reexamination Certificate

active

06375458

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the fabrication of orthodontic and medical instruments and devices and components thereof, and, more particularly to the fabrication thereof from a specially processed Nickel-Titanium shape memory alloy.
BACKGROUND OF THE INVENTION
The concept of using shape memory alloys for eyeglass components has been suggested in numerous articles and patents, and the application of these alloys for medical use is well advanced.
Andresson in U.S. Pat. No. 4,037,324 suggested the use of shape memory alloys for orthodontic arch wires, and since this early patent many other patents have issued claiming the advantages of using shape memory alloys for both orthodontic as well as medical components.
The driving force for making metal medical devices from shape memory alloys lies in their great resistance to permanent deformation as compared to conventional alloys employed in this application. Alloys used in conventional orthodontic arch wires and various medical instruments have relied on stainless steel, complex high nickel alloys such as Elgiloy™ and titanium based alloys, all of which can be given quite high yield strength through work hardening, but in use can be fairly easily permanently deformed. Normal metals, even with very high yield strength, cannot sustain strains much greater than 0.2% without suffering a permanent set. Once a bend or kink has been sustained in a medical instrument or device fabricated from one of the above conventional alloys it is virtually impossible to remove. The unusual property of pseudoelasticity exhibited by shape memory alloys such as Au—Cd, Cu—Zn—Al, Ni—Ti and many others makes possible the complete “elastic” recovery of strains as great as 10%. Due to its high recoverable strain and its excellent resistance to corrosion, the shape memory alloy of preference for orthodontic and medical components has been within the Ni—Ti family of alloys.
Shape memory alloys belong to a class which exhibit what is termed thermoelastic martensite transformation. The term martensite refers to the crystalline phase which is produced in steels when quenched from a high temperature. The phase which exists at the elevated temperature is referred to as austenite; these terms have been carried over to describe the transformations which occur in shape memory alloys. When a steel has been quenched from the austenitic temperature to martensite, to again form austenite requires heating the structure to quite high temperatures, usually in excess of 1400° F.
By contrast, the thermoelastic shape memory alloys can change from martensite to austenite and back again on heating and cooling over a very small temperature range, typically from 18 to 55° F. The transformation of a shape memory alloy is usually described by its hysteresis curve, FIG.
1
. In this figure it is shown that on cooling from the austenitic phase, often called the parent phase, martensite starts to form at a temperature designated as M
S
and upon reaching the lower temperature, M
F
the alloy is completely martensitic. Upon heating from below the M
F
temperature the martensite starts to revert to the austenitic structure at A
S
and when the temperature designated as A
f
is reached the alloy is completely austenitic. These two phases or crystalline structures have very different mechanical properties: the Young's Modulus of austenite is ~12×10
6
psi while that for martensite is ~4×10
6
psi. and the yield strength, which depends on the amount of cold work the alloy is given, ranges from 28 to 100 ksi for austenite and from 10 to 20 ksi for martensite.
The unique feature of shape memory alloys is their ability to recover deformation. When a shape memory alloy specimen, hereinafter referred to as SMA, in its martensitic form is subjected to stress, the strain is accommodated by the growth and shrinkage of individual martensite variants rather than by the mechanisms which prevail in conventional alloys: slip, grain boundary sliding and dislocation motion. When deformed martensite is heated to the austenite finish temperature A
F
the part reverts to its original undeformed state. This process is illustrated in FIG.
2
.
Although this process could be utilized in medical devices to recover accidental bending and kinking, the mechanical properties of martensite, its yield strength and its modulus of elasticity, are too low for this application, and, in addition, heating medical devices is not a convenient process. Fortunately, another mode of deformation of SMAs provides the properties and behavior ideally suited to this service; this is pseudoelastic behavior.
As indicated above, martensite forms when a SMA is cooled from the austenitic region to below the M
S
temperature; it can also form when the austenite is stressed to above some critical level. The martensite so formed is called stress-induced-martensite or SIM. Since the martensite formed under stress is at a temperature where it is not stable, when the stress is removed the alloy spontaneously reverts to its prior unstressed shape. This behavior is illustrated in FIG.
3
. It can be observed that the reversion stress is lower than the stress at which martensite forms. These stresses are referred to as the upper and lower plateau stresses and their magnitude is dependent on the thermal and mechanical treatment which the SMA has received. As the temperature of the specimen is raised, the stress magnitude required to produce SIM is increased, as shown in
FIG. 4
, however when the specimen reaches a critical temperature above A
F
, designated as M
D
, stress induced martensite cannot be formed, no matter how high the stress. This behavior gives rise to a limitation on using the pseudoelastic property in many situations since it places a limit on the temperature range over which pseudoelasticity is observed; typically in the NiTi alloys, this is a temperature range of about 60° C. (108° F.), although a 40° C. (72° F.) range is more typical. The desirable temperature range for medical and orthodontic application is in the region of body temperature, +40° C.±10° C., readily achieved in these alloys.
Prior practitioners of the art of applying SMAs to medical and orthodontic components have resorted to the use of an SMA which has been cold worked in the martensitic state followed by a low temperature anneal to give a combination of shape memory behavior and superelastic characteristics. This processing gives a component with an elastic range of approximately 3% over a temperature range of −20 to +40° C. We have found that by using an alloy with higher than the equiatomic Ni/Ti ratio, subjecting it to a high temperature annealing followed by water quenching and a subsequent aging treatment, that we obtain a pseudoelastic behavior combined with excellent forming characteristics and a strain recovery of at least 3% over a temperature range from −20 to +40° C. The treated alloy yield strength ranges from 42 to 72 Ksi.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a nickel-titanium alloy which is particularly useful for medical instruments and devices, as well as components thereof.
Another object of the present invention is to provide an alloy having pseudo-elastic properties and which is useful for medical instruments and devices, as well as components thereof.
A further object of the present invention is to provide a material for making medical instruments and devices as well as components thereof which are formable without the creation of cracks.
These and other objects of the present invention are accomplished by providing a nickel-titanium shape memory alloy which is especially useful in making medical instruments and devices, as well as components thereof and has desired pseudoelastic properties, characterized by:
allowing large plastic deformations during fabrication of the part before the desired pseudoelastic properties are established,
having pseudoelastic properties without using cold working,
having greater than 2.5% elastic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical instruments and devices and parts thereof using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical instruments and devices and parts thereof using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical instruments and devices and parts thereof using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2924551

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.